cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A100789 First differences of A000543.

Original entry on oeis.org

1, 22, 310, 2583, 13809, 54186, 171002, 460055, 1096313, 2375494, 4768246, 8988607, 16078425, 27509418, 45304554, 72180431, 111712337, 168523670, 248501398, 359039239, 509310241, 710570442, 976495290, 1323550503
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2005

Keywords

Formula

(1/12)(2n+1)(2n^6+6n^5+11n^4+12n^3+25n^2+20n+12). - Ralf Stephan, May 16 2007

A060530 Number of inequivalent ways to color edges of a cube using at most n colors.

Original entry on oeis.org

0, 1, 218, 22815, 703760, 10194250, 90775566, 576941778, 2863870080, 11769161895, 41669295250, 130772947481, 371513523888, 970769847320, 2362273657030, 5406141568500, 11728193258496, 24276032182173, 48201464902410, 92221684354915
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2001

Keywords

Comments

Here inequivalent means under the action of the rotation group of the cube, of order 24, which in its action on the edges has cycle index (x1^12 + 3*x2^6 + 6*x4^3 + 6*x1^2*x2^5 + 8*x3^4)/24.
Also, number of inequivalent colorings of the edges of a regular octahedron using at most n colors. - José H. Nieto S., Jan 19 2012
From Robert A. Russell, Oct 08 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular octahedron and cube are {3,4} and {4,3} respectively. They are mutually dual.
There are 24 elements in the rotation group of the regular octahedron/cube. They divide into five conjugacy classes. The first formula is obtained by averaging the edge cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^12
Vertex rotation 8 x_3^4
Edge rotation 6 x_1^2x_2^5
Small face rotation 6 x_4^3
Large face rotation 3 x_2^6 (End)
Also, number of ways of coloring the vertices of the truncated tetrahedron or faces of the triakis tetrahedron up to rotation and reflection. - Peter Kagey, Nov 27 2024

References

  • N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).

Crossrefs

Cf. A199406 (unoriented), A337406 (chiral), A331351 (achiral).
Other elements: A000543 (cube vertices, octahedron faces), A047780 (cube faces, octahedron vertices).
Cf. A046023 (tetrahedron), A282670 (dodecahedron/icosahedron).
Row 3 of A337407 (orthotope edges, orthoplex ridges) and A337411 (orthoplex edges, orthotope ridges).

Programs

  • Mathematica
    Table[(n^12+6n^7+3n^6+8n^4+6n^3)/24,{n,0,20}] (* Harvey P. Dale, Feb 13 2013 *)
  • PARI
    { for (n=0, 200, write("b060530.txt", n, " ", (n^12 + 6*n^7 + 3*n^6 + 8*n^4 + 6*n^3)/24); ) } \\ Harry J. Smith, Jul 06 2009

Formula

a(n) = (n^12 + 6*n^7 + 3*n^6 + 8*n^4 + 6*n^3)/24. (Replace all x_i's in the cycle index by n.)
G.f.: -x*(150*x^10 +19758*x^9 +425032*x^8 +2763481*x^7 +6769435*x^6 +6773089*x^5 +2763307*x^4 +423883*x^3 +20059*x^2 +205*x +1)/(x -1)^13. - Colin Barker, Aug 13 2012
From Robert A. Russell, Oct 08 2020: (Start)
a(n) = 1*C(n,1) + 216*C(n,2) + 22164*C(n,3) + 613804*C(n,4) + 6901425*C(n,5) + 39713430*C(n,6) + 131754420*C(n,7) + 267165360*C(n,8) + 336798000*C(n,9) + 257796000*C(n,10) + 109771200*C(n,11) + 19958400*C(n,12), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A199406(n) + A337406(n) = 2*A199406(n) - A331351(n) = 2*A337406(n) + A331351(n). (End)

Extensions

Entry revised by N. J. A. Sloane, Jan 03 2005

A047780 Number of inequivalent ways to color faces of a cube using at most n colors.

Original entry on oeis.org

0, 1, 10, 57, 240, 800, 2226, 5390, 11712, 23355, 43450, 76351, 127920, 205842, 319970, 482700, 709376, 1018725, 1433322, 1980085, 2690800, 3602676, 4758930, 6209402, 8011200, 10229375, 12937626, 16219035, 20166832, 24885190, 30490050
Offset: 0

Views

Author

Keywords

Comments

Here inequivalent means under the action of the rotation group of the cube, of order 24, which in its action on the faces has cycle index (x1^6 + 3*x1^2*x2^2 + 6*x1^2*x4 + 6*x2^3 + 8*x3^2)/24.
a(n) is also the number of inequivalent colorings of the vertices of a regular octahedron using at most n colors. - José H. Nieto S., Jan 19 2012
From Robert A. Russell, Oct 08 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular octahedron and cube are {3,4} and {4,3} respectively. They are mutually dual.
There are 24 elements in the rotation group of the regular octahedron/cube. They divide into five conjugacy classes. The first formula is obtained by averaging the cube face (octahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^6
Vertex rotation 8 x_3^2
Edge rotation 6 x_2^3
Small face rotation 6 x_1^2x_4^1
Large face rotation 3 x_1^2x_2^2 (End)

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 254 (corrected).
  • N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).
  • M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246 (the formula given is incorrect but was corrected in the second printing).
  • J.-P. Delahaye, 'Le miraculeux "lemme de Burnside"','Le coloriage du cube' p. 147 in 'Pour la Science' (French edition of 'Scientific American') No.350 December 2006 Paris.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A198833 (unoriented), A093566(n+1) (chiral), A337898 (achiral).
Other elements: A060530 (edges), A000543 (cube vertices, octahedron faces).
Cf. A006008 (tetrahedron), A000545 (dodecahedron faces, icosahedron vertices), A054472 (icosahedron faces, dodecahedron vertices).
Row 3 of A325004 (orthoplex vertices, orthotope facets) and A337887 (orthotope faces, orthoplex peaks).

Programs

  • Magma
    [(n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24: n in [1..30]]; // Vincenzo Librandi, Apr 27 2012
  • Mathematica
    CoefficientList[Series[x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7,{x,0,33}],x] (* Vincenzo Librandi, Apr 27 2012 *)

Formula

a(n) = (n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24 = n+8*C(n, 2)+30*C(n, 3)+68*C(n, 4)+75*C(n, 5)+30*C(n, 6). Each term of the RHS indicates the number of ways to use n colors to color the cube faces (octahedron vertices) with exactly 1, 2, 3, 4, 5, or 6 colors.
G.f.: x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7. - Colin Barker, Jan 29 2012
a(n) = A198833(n) + A093566(n+1) = 2*A198833(n) - A337898(n) = 2*A093566(n+1) + A337898(n). - Robert A. Russell, Oct 08 2020

Extensions

Corrected version of A006550 and A006529.
Entry revised by N. J. A. Sloane, Jan 03 2005

A128766 Number of inequivalent n-colorings of the vertices of the 3D cube under full orthogonal group of the cube (of order 48).

Original entry on oeis.org

1, 22, 267, 1996, 10375, 41406, 135877, 384112, 966141, 2212750, 4693711, 9340332, 17610307, 31703686, 54839625, 91604416, 148382137, 233880102, 359762131, 541403500, 798782271, 1157522542, 1650105997, 2317268976, 3209603125
Offset: 1

Views

Author

Ricardo Perez-Aguila (ricardo.perez.aguila(AT)gmail.com), Apr 04 2007

Keywords

Comments

The formula was obtained by computing the cycle index of the group of geometric transformations, in 3D space, generated by all possible compositions of the 3 main reflections and the 3 main rotations and their inverses, in any order, with repetition of these geometric transformations allowed.
I assume this refers to colorings of the vertices of the cube. - N. J. A. Sloane, Apr 06 2007
Also the number of ways to color the faces of a regular octahedron with n colors, counting each pair of mirror images as one.

Examples

			a(2)=22 because there are 22 inequivalent 2-colorings of the 3D cube, including two for which all of the vertices have the same color.
		

References

  • Banks, D. C.; Linton, S. A. & Stockmeyer, P. K. Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
  • Perez-Aguila, Ricardo. Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation. Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
  • Polya, G. & Read R. C. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, 1987.

Crossrefs

Cf. A000543 Number when mirror images are counted separately.

Programs

  • Mathematica
    A[n_] := (1/48)*(20*n^2 + 21*n^4 + 6*n^6 + n^8)
    (*or*)
    Drop[Table[CycleIndex[GraphData[{"Hypercube",3},"Automorphisms"],s]/.Table[s[i]->n,{i,1,8}],{n,0,25}],1]  (* Geoffrey Critzer, Mar 31 2013 *)

Formula

a(n) = (1/48)*(20*n^2 + 21*n^4 + 6*n^6 + n^8).
G.f.: x*(1+x)*(1+12*x+93*x^2+208*x^3+93*x^4+12*x^5+x^6)/(1-x)^9. [Colin Barker, Mar 08 2012]
Cycle Index is (1/48)*(s[1]^8 + 6*s[1]^4*s[2]^2 + 13*s[2]^4 + 8*s[1]^2*s[3]^2 + 12*s[4]^2 + 8*s[2]*s[6]) - Geoffrey Critzer, Mar 31 2013
a(n)=C(n,1)+20C(n,2)+204C(n,3)+1056C(n,4)+2850C(n,5)+4080C(n,6)+2940C(n,7)+840C(n,8). Each term indicates the number of ways to use n colors to color the cube vertices (octahedron faces) with exactly 1, 2, 3, 4, 5, 6, 7, or 8 colors.

A325012 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 24, 23, 1, 25, 70, 333, 496, 1, 36, 165, 2916, 230076, 2275974, 1, 49, 336, 16725, 22456756, 965227578201, 800648638402240, 1, 64, 616, 70911, 795467350, 9607713956430560, 149031415906337877339236058, 1054942853799126580390222487977120, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
Also the number of oriented colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
1   4      9       16        25          36           49            64 ...
1   6     24       70       165         336          616          1044 ...
1  23    333     2916     16725       70911       241913        701968 ...
1 496 230076 22456756 795467350 14697611496 173107727191 1466088119056 ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses one color for each vertex.
		

Crossrefs

Cf. A325013 (unoriented), A325014 (chiral), A325015 (achiral), A325016 (exactly k colors).
Other n-dimensional polytopes: A324999 (simplex), A325004 (orthotope).
Rows 1-3 are A000290, A006528, A000543; column 2 is A237748.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n,MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1);(* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[(CI0[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = A325013(n,k) + A325014(n,k) = 2*A325013(n,k) - A325015(n,k) = 2*A325014(n,k) + A325015(n,k).
A(n,k) = Sum_{j=1..2^n} A325016(n,j) * binomial(k,j).

A337897 Number of achiral colorings of the 8 triangular faces of a regular octahedron or the 8 vertices of a cube using n or fewer colors.

Original entry on oeis.org

1, 21, 201, 1076, 4025, 11901, 29841, 66256, 134001, 251725, 445401, 750036, 1211561, 1888901, 2856225, 4205376, 6048481, 8520741, 11783401, 16026900, 21474201, 28384301, 37055921, 47831376, 61100625, 77305501, 96944121
Offset: 1

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbols for the cube and regular octahedron are {4,3} and {3,4} respectively. They are mutually dual.
There are 24 elements in the automorphism group of the regular octahedron/cube that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the cube vertex (octahedron face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^4
Vertex rotation* 8 x_2^1x_6^1 Asterisk indicates that the
Edge rotation* 6 x_1^4x_2^2 operation is followed by an
Small face rotation* 3 x_4^2 inversion.
Large face rotation* 6 x_2^4

Crossrefs

Cf. A000543 (oriented), A128766 (unoriented), A337896 (chiral).
Other elements: A331351 (edges), A337898 (cube faces, octahedron vertices).
Other polyhedra: A006003 (tetrahedron), A337962 (dodecahedron faces, icosahedron vertices), A337960 (icosahedron faces, dodecahedron vertices).
Row 3 of A337894 (orthoplex faces, orthotope peaks) and A325015 (orthotope vertices, orthoplex facets).

Programs

  • Mathematica
    Table[n^2(7+2n^2+3n^4)/12, {n,30}]

Formula

a(n) = n^2 * (7 + 2*n^2 + 3*n^4) / 12.
a(n) = 1*C(n,1) + 19*C(n,2) + 141*C(n,3) + 394*C(n,4) + 450*C(n,5) + 180*C(n,6), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A128766(n) - A000543(n) = A000543(n) - 2*A337896(n) = A128766(n) - A337896(n).
G.f.: x * (1+x) * (1 + 13*x + 62*x^2 + 13*x^3 + x^4) / (1-x)^7.

A000545 Number of ways of n-coloring a dodecahedron.

Original entry on oeis.org

1, 96, 9099, 280832, 4073375, 36292320, 230719293, 1145393152, 4707296613, 16666924000, 52307593239, 148602435840, 388302646355, 944900450144, 2162441849625, 4691253854208, 9710376716137, 19280531603808, 36888593841475, 68266682784000, 122597146773927
Offset: 1

Views

Author

Clint. C. Williams (Clintwill(AT)aol.com)

Keywords

Comments

More explicitly, a(n) is the number of colorings with at most n colors of the faces of a regular dodecahedron, inequivalent under the action of the rotation group of the dodecahedron. It is also the number of inequivalent colorings of the vertices of a regular icosahedron using at most n colors. - José H. Nieto S., Jan 19 2012
From Robert A. Russell, Oct 03 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual. There are 60 elements in the rotation group of the regular dodecahedron/icosahedron. They divide into five conjugacy classes. The first formula is obtained by averaging the dodecahedron face (icosahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^12
Edge rotation 15 x_2^6
Vertex rotation 20 x_3^4
Small face rotation 12 x_1^2x_5^2
Large face rotation 12 x_1^2x_5^2 (End)

Crossrefs

Cf. A252705 (unoriented), A337961 (chiral), A337962 (achiral).
Other elements: A054472 (dodecahedron vertices, icosahedron faces), A282670 (edges).
Other polyhedra: A006008 (tetrahedron), A047780 (cube faces, octahedron vertices), A000543 (octahedron faces, cube vertices).

Programs

  • Maple
    (1/60)*n^12+(1/4)*n^6+(11/15)*n^4;
  • Mathematica
    Table[n^12/60+n^6/4+11 n^4/15,{n,20}] (* or *) CoefficientList[Series[ -(((1+x) (1+x (82+x (7847+x (161900+x (943640+x (1764740+x (943640+x (161900+x (7847+x (82+x)))))))))))/(x-1)^13),{x,0,20}],x] (* Harvey P. Dale, Apr 25 2011 *)

Formula

G.f.: x*((1+x)*(1+x*(82+x*(7847+x*(161900+x*(943640+x*(1764740+x*(943640+x*(161900+x*(7847+x*(82+x)))))))))))/(1-x)^13. - Harvey P. Dale, Apr 25 2011
From Robert A. Russell, Oct 03 2020: (Start)
a(n) = (n^12 + 15*n^6 + 44*n^4) / 60.
a(n) = 1*C(n,1) + 94*C(n,2) + 8814*C(n,3) + 245008*C(n,4) + 2759250*C(n,5) + 15884004*C(n,6) + 52701264*C(n,7) + 106866144*C(n,8) + 134719200*C(n,9) + 103118400*C(n,10) + 43908480*C(n,11) + 7983360*C(n,12), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A252705(n) + A337961(n) = 2*A252705(n) - A337962(n) = 2*A337961(n) + A337962(n). (End)

A054472 Number of ways to color faces of an icosahedron using at most n colors.

Original entry on oeis.org

0, 1, 17824, 58130055, 18325477888, 1589459765875, 60935989677984, 1329871177501573, 19215358684143616, 202627758536996445, 1666666669200004000, 11212499922098481787, 63895999889747261952, 316749396282749868607, 1394470923827552301472, 5542094550277768379625
Offset: 0

Views

Author

Vladeta Jovovic, May 20 2000

Keywords

Comments

More explicitly, a(n) is the number of colorings with at most n colors of the faces of a regular icosahedron, inequivalent under the action of the rotation group of the icosahedron. It is also the number of inequivalent colorings of the vertices of a regular dodecahedron using at most n colors. - José H. Nieto S., Jan 19 2012
From Robert A. Russell, Oct 19 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual.
There are 60 elements in the rotation group of the regular dodecahedron/icosahedron. They divide into five conjugacy classes. The first formula is obtained by averaging the icosahedron face (dodecahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^20
Vertex rotation 20 x_1^2x_3^6
Edge rotation 15 x_2^10
Small face rotation 12 x_5^4
Large face rotation 12 x_5^4 (End)

Crossrefs

Cf. A252704 (unoriented), A337959 (chiral), A337960 (achiral), A282670 (edges), A000545 (dodecahedron faces, icosahedron vertices), A006008 (tetrahedron), A047780 (cube faces, octahedron vertices), A000543 (octahedron faces, cube vertices).

Programs

  • Maple
    A054472:=n->(n^20 + 15*n^10 + 20*n^8 + 24*n^4)/60; seq(A054472(n), n=0..15); # Wesley Ivan Hurt, Jan 28 2014
  • Mathematica
    Table[(n^20+15n^10+20n^8+24n^4)/60,{n,0,15}] (* Harvey P. Dale, Nov 04 2011 *)
    LinearRecurrence[{21,-210,1330,-5985,20349,-54264,116280,-203490,293930,-352716,352716,-293930,203490,-116280,54264,-20349,5985,-1330,210,-21,1},{0,1,17824,58130055,18325477888,1589459765875,60935989677984,1329871177501573,19215358684143616,202627758536996445,1666666669200004000,11212499922098481787,63895999889747261952,316749396282749868607,1394470923827552301472,5542094550277768379625,20148763660520129167360,67737190111299199134361,212470603607497593076128,626499557627304397693519,1747626666669235200064000},20] (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n) = (1/60)*(n^20+15*n^10+20*n^8+24*n^4).
G.f.: -x*(x +1)*(x^18 +17802*x^17 +57738159*x^16 +17050750284*x^15 +1199757591558*x^14 +30128721042672*x^13 +329847884196810*x^12 +1749288479932404*x^11 +4727182539811968*x^10 +6598854419308684*x^9 +4727182539811968*x^8 +1749288479932404*x^7 +329847884196810*x^6 +30128721042672*x^5 +1199757591558*x^4 +17050750284*x^3 +57738159*x^2 +17802*x +1) / (x -1)^21. - Colin Barker, Jul 13 2013
a(n) = 1*C(n,1) + 17822*C(n,2) + 58076586*C(n,3) + 18093064608*C(n,4) + 1498413498750*C(n,5) + 51672950917308*C(n,6) + 936058547290608*C(n,7) + 10194866756893728*C(n,8) + 72644237439379200*C(n,9) + 357895538663241600*C(n,10) + 1264592451488446080*C(n,11) + 3281293750348373760*C(n,12) + 6337930306906598400*C(n,13) + 9157388718839961600*C(n,14) + 9858321678965760000*C(n,15) + 7794071905639219200*C(n,16) + 4394429252269056000*C(n,17) + 1672620130621440000*C(n,18) + 385209484627968000*C(n,19) + 40548366802944000*C(n,20), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors. - Robert A. Russell, Dec 03 2014
a(n) = A252704(n) + A337959(n) = 2*A252704(n) - A337960(n) = 2*A337959(n) + A337960(n). - Robert A. Russell, Oct 19 2020

Extensions

More terms from James Sellers, May 23 2000
More terms from Colin Barker, Jul 12 2013

A337891 Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the faces of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 23, 1, 4, 333, 22409620, 1, 5, 2916, 9651199594275, 629648865588086369152, 1, 6, 16725, 96076801068337216, 76983765319971901895960429658208179, 63433230786931550329738915431918588874940416, 1
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. For n=2, the figure is a square with one square face. For n=3, the figure is an octahedron with 8 triangular faces. For higher n, the number of triangular faces is 8*C(n,3).
Also the number of oriented colorings of the peaks of an n-dimensional orthotope (hypercube). A peak is an (n-3)-dimensional orthotope.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

Examples

			Array begins with T(2,1):
1        2             3                 4                     5 ...
1       23           333              2916                 16725 ...
1 22409620 9651199594275 96076801068337216 121265960728368199375 ...
		

Crossrefs

Cf. A337892 (unoriented), A337893 (chiral), A337894 (achiral).
Other elements: A325004 (vertices), A337411 (edges).
Other polytopes: A337883 (simplex), A337887 (orthotope).
Rows 2-4 are A000027, A000543, A331358

Programs

  • Mathematica
    m=2; (* dimension of color element, here a face *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[m]=b;
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten

Formula

T(n,k) = A337892(n,k) + A337893(n,k) = 2*A337892(n,k) - A337894(n,k) = 2*A337893(n,k) + A337894(n,k).

A337896 Number of chiral pairs of colorings of the 8 triangular faces of a regular octahedron or the 8 vertices of a cube using n or fewer colors.

Original entry on oeis.org

0, 1, 66, 920, 6350, 29505, 106036, 317856, 832140, 1961025, 4248310, 8590296, 16398746, 29814785, 51983400, 87399040, 142333656, 225359361, 347978730, 525376600, 777308070, 1129138241, 1613050076, 2269437600
Offset: 1

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other.

Examples

			For a(2)=1, centering the octahedron (cube) at the origin and aligning the diagonals (edges) with the axes, color the faces (vertices) in the octants ---, --+, -++, and +++ with one color and the other 4 elements with the other color.
		

Crossrefs

Cf. A000543 (oriented), A128766(unoriented), A337897 (achiral).
Other elements: A337406 (edges), A093566(n+1) (cube faces, octahedron vertices).
Other polyhedra: A000332 (simplex), A093566(n+1) (cube/octahedron).
Row 3 of A325014 (chiral pairs of colorings of orthoplex facets or orthotope vertices).
Row 3 of A337893 (chiral pairs of colorings of orthoplex faces or orthotope peaks).

Programs

  • Mathematica
    Table[(n-1)n^2(n+1)(8-5n^2+n^4)/48, {n,30}]

Formula

a(n) = (n-1) * n^2 * (n+1) * (8 - 5*n^2 + n^4) / 48.
a(n) = 1*C(n,2) + 63*C(n,3) + 662*C(n,4) + 2400*C(n,5) + 3900*C(n,6) + 2940*C(n,7) + 840*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
G.f.: x^2 * (1+x) * (1+56*x+306*x^2+56*x^3+x^4) / (1-x)^9.
a(n) = A000543(n) - A128766(n) = (A000543(n) - A337897(n)) / 2 = A128766(n) - A337897(n).
Showing 1-10 of 13 results. Next