cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A100794 First differences of A060530.

Original entry on oeis.org

1, 217, 22597, 680945, 9490490, 80581316, 486166212, 2286928302, 8905291815, 29900133355, 89103652231, 240740576407, 599256323432, 1391503809710, 3043867911470, 6322051689996, 12547838923677, 23925432720237, 44020219452505, 78445310367085, 135826279312486
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2005

Keywords

A047780 Number of inequivalent ways to color faces of a cube using at most n colors.

Original entry on oeis.org

0, 1, 10, 57, 240, 800, 2226, 5390, 11712, 23355, 43450, 76351, 127920, 205842, 319970, 482700, 709376, 1018725, 1433322, 1980085, 2690800, 3602676, 4758930, 6209402, 8011200, 10229375, 12937626, 16219035, 20166832, 24885190, 30490050
Offset: 0

Views

Author

Keywords

Comments

Here inequivalent means under the action of the rotation group of the cube, of order 24, which in its action on the faces has cycle index (x1^6 + 3*x1^2*x2^2 + 6*x1^2*x4 + 6*x2^3 + 8*x3^2)/24.
a(n) is also the number of inequivalent colorings of the vertices of a regular octahedron using at most n colors. - José H. Nieto S., Jan 19 2012
From Robert A. Russell, Oct 08 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular octahedron and cube are {3,4} and {4,3} respectively. They are mutually dual.
There are 24 elements in the rotation group of the regular octahedron/cube. They divide into five conjugacy classes. The first formula is obtained by averaging the cube face (octahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^6
Vertex rotation 8 x_3^2
Edge rotation 6 x_2^3
Small face rotation 6 x_1^2x_4^1
Large face rotation 3 x_1^2x_2^2 (End)

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 254 (corrected).
  • N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).
  • M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246 (the formula given is incorrect but was corrected in the second printing).
  • J.-P. Delahaye, 'Le miraculeux "lemme de Burnside"','Le coloriage du cube' p. 147 in 'Pour la Science' (French edition of 'Scientific American') No.350 December 2006 Paris.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A198833 (unoriented), A093566(n+1) (chiral), A337898 (achiral).
Other elements: A060530 (edges), A000543 (cube vertices, octahedron faces).
Cf. A006008 (tetrahedron), A000545 (dodecahedron faces, icosahedron vertices), A054472 (icosahedron faces, dodecahedron vertices).
Row 3 of A325004 (orthoplex vertices, orthotope facets) and A337887 (orthotope faces, orthoplex peaks).

Programs

  • Magma
    [(n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24: n in [1..30]]; // Vincenzo Librandi, Apr 27 2012
  • Mathematica
    CoefficientList[Series[x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7,{x,0,33}],x] (* Vincenzo Librandi, Apr 27 2012 *)

Formula

a(n) = (n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24 = n+8*C(n, 2)+30*C(n, 3)+68*C(n, 4)+75*C(n, 5)+30*C(n, 6). Each term of the RHS indicates the number of ways to use n colors to color the cube faces (octahedron vertices) with exactly 1, 2, 3, 4, 5, or 6 colors.
G.f.: x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7. - Colin Barker, Jan 29 2012
a(n) = A198833(n) + A093566(n+1) = 2*A198833(n) - A337898(n) = 2*A093566(n+1) + A337898(n). - Robert A. Russell, Oct 08 2020

Extensions

Corrected version of A006550 and A006529.
Entry revised by N. J. A. Sloane, Jan 03 2005

A199406 The number of inequivalent ways to color the edges of a cube using at most n colors.

Original entry on oeis.org

1, 144, 12111, 358120, 5131650, 45528756, 288936634, 1433251296, 5887880415, 20842168600, 65402344161, 185788177224, 485443851256, 1181242399260, 2703252560100, 5864398969216, 12138503871789, 24101498435616, 46112016365155, 85335258695400, 153249227870046
Offset: 1

Views

Author

Geoffrey Critzer, Nov 05 2011

Keywords

Comments

Two edge colorings are equivalent if one is the mirror image of the other or the cube can be picked up and rotated in any manner to obtain the other.
The group here has order 48 (compare A060530). - N. J. A. Sloane, Aug 14 2012
Also the number of unoriented colorings of the 12 edges of a regular octahedron with n or fewer colors. The Schläfli symbols of the cube and octahedron are {4,3} and {3,4} respectively. They are mutually dual. For an unoriented coloring, chiral pairs are counted as one. - Robert A. Russell, Oct 17 2020

Crossrefs

Cf. A060530 (oriented), A337406 (chiral), A331351 (achiral), A128766 (cube vertices, octahedron faces), A198833 (cube faces, octahedron vertices), A063842(n-1) (tetrahedron), A337963 (dodecahedron, icosahedron).
Row 3 of A337408 (orthotope edges, orthoplex ridges) and A337412 (orthoplex edges, orthotope ridges).

Programs

  • Mathematica
    Table[CycleIndex[KSubsetGroup[Automorphisms[CubicalGraph], Edges[CubicalGraph]],s] /. Table[s[i]->n, {i,1,6}], {n,1,15}]
    Table[(8n^2+12n^3+8n^4+4n^6+12n^7+3n^8+n^12)/48, {n,20}] (* Robert A. Russell, Oct 17 2020 *)

Formula

a(n) = n^12/48 + n^8/16 + n^7/4 + n^6/12 + n^4/6 + n^3/4 + n^2/6.
Cycle index = 1/48(s_1^12+3s_1^4s_2^4+12s_1^2s_2^5+4s_2^6+8s_3^4+12s_4^3+8s_6^2).
G.f.: -x*(76*x^10 +10016*x^9 +212772*x^8 +1380453*x^7 +3384939*x^6 +3388593*x^5 +1380279*x^4 +211623*x^3 +10317*x^2 +131*x +1)/(x -1)^13. [Colin Barker, Aug 13 2012]
From Robert A. Russell, Oct 17 2020: (Start)
a(n) = A060530(n) - A337406(n) = (A060530(n) + A331351(n)) / 2 = A337406(n) + A331351(n).
a(n) = 1*C(n,1) + 142*C(n,2) + 11682*C(n,3) + 310536*C(n,4) + 3460725*C(n,5) + 19870590*C(n,6) + 65886660*C(n,7) + 133585200*C(n,8) + 168399000*C(n,9) + 128898000*C(n,10) + 54885600*C(n,11) + 9979200*C(n,12), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors. (End)

A000543 Number of inequivalent ways to color vertices of a cube using at most n colors.

Original entry on oeis.org

0, 1, 23, 333, 2916, 16725, 70911, 241913, 701968, 1798281, 4173775, 8942021, 17930628, 34009053, 61518471, 106823025, 179003456, 290715793, 459239463, 707740861, 1066780100, 1576090341, 2286660783, 3263156073, 4586706576
Offset: 0

Views

Author

Clint. C. Williams (Clintwill(AT)aol.com)

Keywords

Comments

Here inequivalent means under the action of the rotation group of the cube, of order 24, which in its action on the vertices has cycle index (x1^8 + 9*x2^4 + 6*x4^2 + 8*x1^2*x3^2)/24.
Also the number of ways to color the faces of a regular octahedron with n colors, counting mirror images separately.
From Robert A. Russell, Oct 08 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular octahedron and cube are {3,4} and {4,3} respectively. They are mutually dual.
There are 24 elements in the rotation group of the regular octahedron/cube. They divide into five conjugacy classes. The first formula is obtained by averaging the cube vertex (octahedron face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^8
Vertex rotation 8 x_1^2x_3^2
Edge rotation 6 x_2^4
Small face rotation 6 x_4^2
Large face rotation 3 x_2^4 (End)

References

  • N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).

Crossrefs

Cf. A128766 (unoriented), A337896 (chiral), A337897 (achiral).
Other elements: A060530 (edges), A047780 (cube faces, octahedron vertices).
Cf. A006008 (tetrahedron), A000545 (dodecahedron faces, icosahedron vertices), A054472 (icosahedron faces, dodecahedron vertices).
Row 3 of A325012 (orthotope vertices, orthoplex facets) and A337891 (orthoplex faces, orthotope peaks).

Programs

  • Magma
    [(1/24)*n^2*(n^6+17*n^2+6): n in [0..30]]; // Vincenzo Librandi, Apr 15 2012
  • Maple
    f:= n->(1/24)*n^2*(n^6+17*n^2+6); seq(f(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, Apr 15 2012 *)
    Table[(n^8+17n^4+6n^2)/24,{n,0,30}] (* Robert A. Russell, Oct 08 2020 *)

Formula

a(n) = (1/24)*n^2*(n^6+17*n^2+6). (Replace all x_i's in the cycle index with n.)
G.f.: x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9. - Colin Barker, Jan 29 2012
a(n) = 1*C(n,1) + 21*C(n,2) + 267*C(n,3) + 1718*C(n,4) + 5250*C(n,5) + 7980*C(n,6) + 5880*C(n,7) + 1680*C(n,8), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A128766(n) + A337896(n) = 2*A128766(n) - A337897(n) = 2*A337896(n) + A337897(n). - Robert A. Russell, Oct 08 2020

Extensions

Entry revised by N. J. A. Sloane, Jan 03 2005

A337411 Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 24, 218, 1, 5, 70, 2285, 90054, 1, 6, 165, 703760, 1471640157, 573439556, 1, 7, 336, 10194250, 1466049174160, 6332134720430727, 50043770249328, 1, 8, 616, 90775566, 310441584462375, 629648890639384572032, 1839894096099964270283469, 59966884221697869216, 1
Offset: 1

Views

Author

Robert A. Russell, Aug 26 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is an octahedron with 12 edges. The number of edges is 2n*(n-1) for n>1.
Also the number of oriented colorings of the regular (n-2)-dimensional orthotopes (hypercubes) in a regular n-dimensional orthotope.

Examples

			Table begins with T(1,1):
1   2     3      4        5        6         7          8           9 ...
1   6    24     70      165      336       616       1044        1665 ...
1 218 22815 703760 10194250 90775566 576941778 2863870080 11769161895 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
		

Crossrefs

Cf. A337412 (unoriented), A337413 (chiral), A337414 (achiral).
Rows 1-4 are A000027, A006528, A060530, A331354.
Cf. A327083 (simplex edges), A337407 (orthotope edges), A325004 (orthoplex vertices).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[m]=b;
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337412(n,k) + A337413(n,k) = 2*A337412(n,k) - A337414(n,k) = 2*A337413(n,k) + A337414(n,k).

A331351 Number of achiral colorings of the edges of a cube or regular octahedron.

Original entry on oeis.org

1, 70, 1407, 12480, 69050, 281946, 931490, 2632512, 6598935, 15041950, 31740841, 62830560, 117855192, 211141490, 363551700, 604679936, 975561405, 1531968822, 2348375395, 3522668800, 5181705606, 7487800650, 10646250902
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A cube has 8 vertices and 12 edges. A regular octahedron has 6 vertices and 12 edges. An achiral coloring is identical to its reflection.
From Robert A. Russell, Oct 08 2020: (Start)
The Schläfli symbols for the cube and regular octahedron are {4,3} and {3,4} respectively. They are mutually dual.
There are 24 elements in the automorphism group of the regular octahedron/cube that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the edge cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^6
Vertex rotation* 8 x_6^2 Asterisk indicates that the
Edge rotation* 6 x_1^2x_2^5 operation is followed by an
Small face rotation* 3 x_4^3 inversion.
Large face rotation* 6 x_1^4x_2^4 (End)

Crossrefs

Cf. A060530 (oriented), A199406 (unoriented), A337406 (chiral), A337897 (octahedron faces, cube vertices), A337898 (cube faces, octahedron vertices), A037270 (tetrahedron), A337953 (dodecahedron, icosahedron).
Row 3 of A337410 (orthotope edges, orthoplex ridges) and A337414 (orthoplex edges, orthotope ridges).

Programs

  • Mathematica
    Table[(8n^2 + 6n^3 + n^6 + 6n^7 + 3n^8)/24, {n, 1, 30}]
    LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 70, 1407, 12480, 69050, 281946, 931490, 2632512, 6598935}, 25]

Formula

a(n) = (8*n^2 + 6*n^3 + n^6 + 6*n^7 + 3*n^8) / 24.
a(n) = 1*C(n,1) + 68*C(n,2) + 1200*C(n,3) + 7268*C(n,4) + 20025*C(n,5) + 27750*C(n,6) + 18900*C(n,7) + 5040*C(n,8), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = 2*A199406(n) - A060530(n) = A060530(n) - 2*A337406(n) = A199406(n) - A337406(n). - Robert A. Russell, Oct 08 2020
G.f.: (x + 61*x^2 + 813*x^3 + 2253*x^4 + 1628*x^5 + 282*x^6 + 2*x^7) / (1-x)^9.
E.g.f.: (1/24)*exp(x)*x*(24 + 816*x + 4800*x^2 + 7268*x^3 + 4005*x^4 + 925*x^5 + 90*x^6 + 3*x^7). - Stefano Spezia, Jan 17 2020

A337406 Number of chiral pairs of colorings of the edges of a cube (or regular octahedron) using n or fewer colors.

Original entry on oeis.org

0, 74, 10704, 345640, 5062600, 45246810, 288005144, 1430618784, 5881281480, 20827126650, 65370603320, 185725346664, 485325996064, 1181031257770, 2702889008400, 5863794289280, 12137528310384, 24099966466794
Offset: 1

Views

Author

Robert A. Russell, Aug 26 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. Both the cube and the octahedron have 12 edges.

Crossrefs

Cf. A060530 (oriented), A199406 (unoriented), A331351 (achiral).
Row 3 of A337409 (orthotope edge colorings) and A337413 (orthoplex edge colorings).

Programs

  • Mathematica
    Table[(n-1)n^2(n+1)(n^8+n^6-2n^4+8)/48, {n,20}]
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{0,74,10704,345640,5062600,45246810,288005144,1430618784,5881281480,20827126650,65370603320,185725346664,485325996064},20] (* Harvey P. Dale, Jul 11 2025 *)

Formula

a(n) = (n-1) * n^2 * (n+1) * (n^8 + n^6 - 2n^4 + 8) / 48.
a(n) = 74*C(n,2) + 10482*C(n,3) + 303268*C(n,4) + 3440700*C(n,5) + 19842840*C(n,6) + 65867760*C(n,7) + 133580160*C(n,8) + 168399000*C(n,9) + 128898000*C(n,10) + 54885600*C(n,11) + 9979200*C(n,12), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = (A060530(n) - A331351(n)) / 2 = A060530(n) - A199406(n) = A199406(n) - A331351(n).
G.f.: 2 * (37*x^2 + 4871*x^3 + 106130*x^4 + 691514*x^5 + 1692248*x^6 + 1692248*x^7 + 691514*x^8 + 106130*x^9 + 4871*x^10 + 37*x^11) / (1-x)^13.

A337407 Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthotope (hypercube) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 24, 218, 1, 5, 70, 22815, 22409620, 1, 6, 165, 703760, 9651199594275, 629648865090036960064, 1, 7, 336, 10194250, 96076801068337216, 76983765319971869475595432431084156, 272443651709491352597039736725488834366101875164020736, 1
Offset: 1

Views

Author

Robert A. Russell, Aug 26 2020

Keywords

Comments

Each chiral pair is counted as two when enumerating oriented arrangements. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is a cube with 12 edges. The number of edges is n*2^(n-1).
Also the number of oriented colorings of the regular (n-2)-dimensional simplexes in a regular n-dimensional orthoplex.

Examples

			Table begins with T(1,1):
1   2     3      4        5        6         7          8           9 ...
1   6    24     70      165      336       616       1044        1665 ...
1 218 22815 703760 10194250 90775566 576941778 2863870080 11769161895 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
		

Crossrefs

Cf. A337408 (unoriented), A337409 (chiral), A337410 (achiral).
Rows 1-4 are A000027, A006528, A060530, A331358.
Cf. A327083 (simplex edges), A337411 (orthoplex edges), A325012 (orthotope vertices).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,7}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337408(n,k) + A337409(n,k) = 2*A337408(n,k) - A337410(n,k) = 2*A337409(n,k) + A337410(n,k).

A282670 Number of inequivalent ways to color the edges of a dodecahedron using at most n colors.

Original entry on oeis.org

0, 1, 17912448, 3431529649899, 19215359484207104, 15522042948408209375, 3684565329384186949248, 375655671519845961645597, 20632333988160040350515200, 706519304587399981447927557, 16666666666669166670000400000, 290823371148118276083759139095
Offset: 0

Views

Author

David Nacin, Feb 20 2017

Keywords

Comments

Cycle index of symmetry group A5 acting on the 30 edges of the dodecahedron is (24s(5)^6 + 20s(3)^10 + 15s(2)^14*s(1)^2 + s(1)^30)/60.
Also the number of inequivalent ways to color the edges of the icosahedron using at most n colors.
From Robert A. Russell, Oct 03 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual. There are 60 elements in the rotation group of the regular dodecahedron/icosahedron. They divide into five conjugacy classes. The first formula is obtained by averaging the edge cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^30
Edge rotation 15 x_1^2x_2^14
Vertex rotation 20 x_3^10
Small face rotation 12 x_5^6
Large face rotation 12 x_5^6 (End)

Examples

			There are a(2) = 17912448 inequivalent ways to color the edges of the dodecahedron using at most two colors.
		

Crossrefs

Other elements: A054472 (dodecahedron vertices, icosahedron faces), A000545 (dodecahedron faces, icosahedron vertices).
Other polyhedra: A046023 (tetrahedron), A060530 (cube/octahedron).
Cf. A337963 (unoriented), A337964 (chiral), A337953 (achiral).

Programs

  • Mathematica
    Table[(24n^6+20n^10+15n^16+n^30)/60, {n, 0, 16}]

Formula

a(n) = n^6 (n^24 + 15 n^10 + 20 n^4 + 24)/60.
G.f.: x*(1 + x)*(1 + 17912416*x + 3430956452060*x^2 + 19105559437892000*x^3 + 14908856825730677891*x^4 + 3197392859155796794496*x^5 + 265368238349945588707496*x^6 + 10365795256050146806088576*x^7 + 215154060506484358838662001*x^8 + 2568188846096433625477331936*x^9 + 18582986600475456162494990756*x^10 + 84400699070086923625163495456*x^11 + 245956255494355672481225103371*x^12 + 465612713610802763378946154496*x^13 + 575747234318647571242943474096*x^14 + 465612713610802763378946154496*x^15 + 245956255494355672481225103371*x^16 + 84400699070086923625163495456*x^17 + 18582986600475456162494990756*x^18 + 2568188846096433625477331936*x^19 + 215154060506484358838662001*x^20 + 10365795256050146806088576*x^21 + 265368238349945588707496*x^22 + 3197392859155796794496*x^23 + 14908856825730677891*x^24 + 19105559437892000*x^25 + 3430956452060*x^26 + 17912416*x^27 + x^28) / (1 - x)^31. - Colin Barker, Mar 30 2019
From Robert A. Russell, Oct 03 2020: (Start)
a(n) = 1*C(n,1) + 17912446*C(n,2) + 3431475912558*C(n,3) + 19201633473082192*C(n,4) + 15426000466104548370*C(n,5) + 3591721233455676488292*C(n,6) + 350189004698594439734160*C(n,7) + 17729388555701917767855840*C(n,8) + 534044352737570253478824960*C(n,9) + 10485619820879148545218980480*C(n,10) + 143066535726280748444739676800*C(n,11) + 1420876074163106703694904352000*C(n,12) + 10631861498419617103267350931200*C(n,13) + 61515486939441778743810979468800*C(n,14) + 280711222366395106969585943040000*C(n,15) + 1025499893865270227589218761728000*C(n,16) + 3032858772294885663526454593536000*C(n,17) + 7319173455487770465200322686976000*C(n,18) + 14487618384525410959295952691200000*C(n,19) + 23580333216029318427870396825600000*C(n,20) + 31555723729541430372276884520960000*C(n,21) + 34619561317726617824610327429120000*C(n,22) + 30946535969611314628728933580800000*C(n,23) + 22311118596400512968549479219200000*C(n,24) + 12771433990957347267674112000000000*C(n,25) + 5668281691036644651075462758400000*C(n,26) + 1879979643918904128084836352000000*C(n,27) + 438404032189593555246120960000000*C(n,28) + 64102774454612839170441216000000*C(n,29) + 4420880996869850977271808000000*C(n,30), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A337963(n) + A337964(n) = 2*A337963(n) - A337953(n) = 2*A337964(n) + A337953(n). (End)

A378473 The number of n-colorings of the vertices of the truncated octahedron up to rotation and reflection.

Original entry on oeis.org

0, 1, 355048, 5886817533, 5864336054656, 1241773051013125, 98716454926955496, 3991277735434713913, 98382652674879674368, 1661801013342756245961, 20833333958666683585000, 205202766952229526577141, 1656184328295547539616128, 11308349424395689922231053
Offset: 0

Views

Author

Peter Kagey, Nov 27 2024

Keywords

Comments

Equivalently, the number of n-colorings of the faces of the tetrakis hexahedron, which is the polyhedral dual of the truncated octahedron.
Colorings are counted up to the full octahedral group of order 48.

Crossrefs

Formula

a(n) = (1/48)*(n^24 + 3*n^16 + 16*n^12 + 8*n^8 + 12*n^6 + 8*n^4).
Asymptotically, a(n) ~ n^24/48.
Showing 1-10 of 17 results. Next