Original entry on oeis.org
1, 217, 22597, 680945, 9490490, 80581316, 486166212, 2286928302, 8905291815, 29900133355, 89103652231, 240740576407, 599256323432, 1391503809710, 3043867911470, 6322051689996, 12547838923677, 23925432720237, 44020219452505, 78445310367085, 135826279312486
Offset: 0
A047780
Number of inequivalent ways to color faces of a cube using at most n colors.
Original entry on oeis.org
0, 1, 10, 57, 240, 800, 2226, 5390, 11712, 23355, 43450, 76351, 127920, 205842, 319970, 482700, 709376, 1018725, 1433322, 1980085, 2690800, 3602676, 4758930, 6209402, 8011200, 10229375, 12937626, 16219035, 20166832, 24885190, 30490050
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 254 (corrected).
- N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).
- M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246 (the formula given is incorrect but was corrected in the second printing).
- J.-P. Delahaye, 'Le miraculeux "lemme de Burnside"','Le coloriage du cube' p. 147 in 'Pour la Science' (French edition of 'Scientific American') No.350 December 2006 Paris.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Polyhedron Coloring
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1)
Other elements:
A060530 (edges),
A000543 (cube vertices, octahedron faces).
Cf.
A006008 (tetrahedron),
A000545 (dodecahedron faces, icosahedron vertices),
A054472 (icosahedron faces, dodecahedron vertices).
Row 3 of
A325004 (orthoplex vertices, orthotope facets) and
A337887 (orthotope faces, orthoplex peaks).
-
[(n^6 + 3*n^4 + 12*n^3 + 8*n^2)/24: n in [1..30]]; // Vincenzo Librandi, Apr 27 2012
-
CoefficientList[Series[x*(1+3*x+8*x^2+16*x^3+2*x^4)/(1-x)^7,{x,0,33}],x] (* Vincenzo Librandi, Apr 27 2012 *)
A199406
The number of inequivalent ways to color the edges of a cube using at most n colors.
Original entry on oeis.org
1, 144, 12111, 358120, 5131650, 45528756, 288936634, 1433251296, 5887880415, 20842168600, 65402344161, 185788177224, 485443851256, 1181242399260, 2703252560100, 5864398969216, 12138503871789, 24101498435616, 46112016365155, 85335258695400, 153249227870046
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Row 3 of
A337408 (orthotope edges, orthoplex ridges) and
A337412 (orthoplex edges, orthotope ridges).
-
Table[CycleIndex[KSubsetGroup[Automorphisms[CubicalGraph], Edges[CubicalGraph]],s] /. Table[s[i]->n, {i,1,6}], {n,1,15}]
Table[(8n^2+12n^3+8n^4+4n^6+12n^7+3n^8+n^12)/48, {n,20}] (* Robert A. Russell, Oct 17 2020 *)
A000543
Number of inequivalent ways to color vertices of a cube using at most n colors.
Original entry on oeis.org
0, 1, 23, 333, 2916, 16725, 70911, 241913, 701968, 1798281, 4173775, 8942021, 17930628, 34009053, 61518471, 106823025, 179003456, 290715793, 459239463, 707740861, 1066780100, 1576090341, 2286660783, 3263156073, 4586706576
Offset: 0
Clint. C. Williams (Clintwill(AT)aol.com)
- N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Polyhedron Coloring
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Other elements:
A060530 (edges),
A047780 (cube faces, octahedron vertices).
Cf.
A006008 (tetrahedron),
A000545 (dodecahedron faces, icosahedron vertices),
A054472 (icosahedron faces, dodecahedron vertices).
Row 3 of
A325012 (orthotope vertices, orthoplex facets) and
A337891 (orthoplex faces, orthotope peaks).
-
[(1/24)*n^2*(n^6+17*n^2+6): n in [0..30]]; // Vincenzo Librandi, Apr 15 2012
-
f:= n->(1/24)*n^2*(n^6+17*n^2+6); seq(f(n), n=0..40);
-
CoefficientList[Series[x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, Apr 15 2012 *)
Table[(n^8+17n^4+6n^2)/24,{n,0,30}] (* Robert A. Russell, Oct 08 2020 *)
A337411
Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 24, 218, 1, 5, 70, 2285, 90054, 1, 6, 165, 703760, 1471640157, 573439556, 1, 7, 336, 10194250, 1466049174160, 6332134720430727, 50043770249328, 1, 8, 616, 90775566, 310441584462375, 629648890639384572032, 1839894096099964270283469, 59966884221697869216, 1
Offset: 1
Table begins with T(1,1):
1 2 3 4 5 6 7 8 9 ...
1 6 24 70 165 336 616 1044 1665 ...
1 218 22815 703760 10194250 90775566 576941778 2863870080 11769161895 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
-
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[m]=b;
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
array[n_, k_] := row[n] /. b -> k
Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten
A331351
Number of achiral colorings of the edges of a cube or regular octahedron.
Original entry on oeis.org
1, 70, 1407, 12480, 69050, 281946, 931490, 2632512, 6598935, 15041950, 31740841, 62830560, 117855192, 211141490, 363551700, 604679936, 975561405, 1531968822, 2348375395, 3522668800, 5181705606, 7487800650, 10646250902
Offset: 1
- G. Royle, Partitions and Permutations
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
Row 3 of
A337410 (orthotope edges, orthoplex ridges) and
A337414 (orthoplex edges, orthotope ridges).
-
Table[(8n^2 + 6n^3 + n^6 + 6n^7 + 3n^8)/24, {n, 1, 30}]
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 70, 1407, 12480, 69050, 281946, 931490, 2632512, 6598935}, 25]
A337406
Number of chiral pairs of colorings of the edges of a cube (or regular octahedron) using n or fewer colors.
Original entry on oeis.org
0, 74, 10704, 345640, 5062600, 45246810, 288005144, 1430618784, 5881281480, 20827126650, 65370603320, 185725346664, 485325996064, 1181031257770, 2702889008400, 5863794289280, 12137528310384, 24099966466794
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
Row 3 of
A337409 (orthotope edge colorings) and
A337413 (orthoplex edge colorings).
-
Table[(n-1)n^2(n+1)(n^8+n^6-2n^4+8)/48, {n,20}]
LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{0,74,10704,345640,5062600,45246810,288005144,1430618784,5881281480,20827126650,65370603320,185725346664,485325996064},20] (* Harvey P. Dale, Jul 11 2025 *)
A337407
Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthotope (hypercube) using k or fewer colors.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 24, 218, 1, 5, 70, 22815, 22409620, 1, 6, 165, 703760, 9651199594275, 629648865090036960064, 1, 7, 336, 10194250, 96076801068337216, 76983765319971869475595432431084156, 272443651709491352597039736725488834366101875164020736, 1
Offset: 1
Table begins with T(1,1):
1 2 3 4 5 6 7 8 9 ...
1 6 24 70 165 336 616 1044 1665 ...
1 218 22815 703760 10194250 90775566 576941778 2863870080 11769161895 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
-
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
array[n_, k_] := row[n] /. b -> k
Table[array[n,d+m-n], {d,7}, {n,m,d+m-1}] // Flatten
A282670
Number of inequivalent ways to color the edges of a dodecahedron using at most n colors.
Original entry on oeis.org
0, 1, 17912448, 3431529649899, 19215359484207104, 15522042948408209375, 3684565329384186949248, 375655671519845961645597, 20632333988160040350515200, 706519304587399981447927557, 16666666666669166670000400000, 290823371148118276083759139095
Offset: 0
There are a(2) = 17912448 inequivalent ways to color the edges of the dodecahedron using at most two colors.
- Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
Other elements:
A054472 (dodecahedron vertices, icosahedron faces),
A000545 (dodecahedron faces, icosahedron vertices).
A378473
The number of n-colorings of the vertices of the truncated octahedron up to rotation and reflection.
Original entry on oeis.org
0, 1, 355048, 5886817533, 5864336054656, 1241773051013125, 98716454926955496, 3991277735434713913, 98382652674879674368, 1661801013342756245961, 20833333958666683585000, 205202766952229526577141, 1656184328295547539616128, 11308349424395689922231053
Offset: 0
Cf.
A000332,
A060530,
A128766,
A199406,
A252704,
A252705,
A274900,
A337963,
A378474,
A378475,
A378476,
A378477,
A378478.
Showing 1-10 of 17 results.
Comments