cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A325012 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 24, 23, 1, 25, 70, 333, 496, 1, 36, 165, 2916, 230076, 2275974, 1, 49, 336, 16725, 22456756, 965227578201, 800648638402240, 1, 64, 616, 70911, 795467350, 9607713956430560, 149031415906337877339236058, 1054942853799126580390222487977120, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
Also the number of oriented colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
1   4      9       16        25          36           49            64 ...
1   6     24       70       165         336          616          1044 ...
1  23    333     2916     16725       70911       241913        701968 ...
1 496 230076 22456756 795467350 14697611496 173107727191 1466088119056 ...
For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses one color for each vertex.
		

Crossrefs

Cf. A325013 (unoriented), A325014 (chiral), A325015 (achiral), A325016 (exactly k colors).
Other n-dimensional polytopes: A324999 (simplex), A325004 (orthotope).
Rows 1-3 are A000290, A006528, A000543; column 2 is A237748.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n,MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1);(* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[(CI0[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = A325013(n,k) + A325014(n,k) = 2*A325013(n,k) - A325015(n,k) = 2*A325014(n,k) + A325015(n,k).
A(n,k) = Sum_{j=1..2^n} A325016(n,j) * binomial(k,j).

A325001 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 5, 1, 5, 16, 15, 6, 1, 6, 25, 34, 21, 7, 1, 7, 36, 65, 56, 28, 8, 1, 8, 49, 111, 125, 84, 36, 9, 1, 9, 64, 175, 246, 210, 120, 45, 10, 1, 10, 81, 260, 441, 461, 330, 165, 55, 11, 1, 11, 100, 369, 736, 917, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. An achiral coloring is the same as its reflection.

Examples

			The array begins with A(1,1):
  1  2  3   4   5    6    7     8     9    10    11     12     13 ...
  1  4  9  16  25   36   49    64    81   100   121    144    169 ...
  1  5 15  34  65  111  175   260   369   505   671    870   1105 ...
  1  6 21  56 125  246  441   736  1161  1750  2541   3576   4901 ...
  1  7 28  84 210  461  917  1688  2919  4795  7546  11452  16848 ...
  1  8 36 120 330  792 1715  3424  6399 11320 19118  31032  48672 ...
  1  9 45 165 495 1287 3003  6434 12861 24265 43593  75087 124683 ...
  1 10 55 220 715 2002 5005 11440 24309 48610 92323 167740 293215 ...
  ...
For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A324999 (oriented), A325000 (unoriented), A325000(n,k-n) (chiral), A325003 (exactly k colors), A327086 (edges, ridges), A337886 (faces, peaks), A325007 (orthotope facets, orthoplex vertices), A325015 (orthoplex facets, orthotope vertices).
Rows 1-4 are A000027, A000290, A006003, A132366(n-1).
Column 2 is A162880.

Programs

  • Mathematica
    Table[Binomial[d+1,n+1] - Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

A(n,k) = binomial(n+k,n+1) - binomial(k,n+1).
A(n,k) = Sum_{j=1..n} A325003(n,j) * binomial(k,j).
A(n,k) = 2*A325000(n,k) - A324999(n,k) = A324999(n,k) - 2*A325000(n,k-n) = A325000(n,k) - A325000(n,k-n).
G.f. for row n: (x - x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * A(n,k-j).
G.f. for column k: (1 - (1-x^2)^k) / (x*(1-x)^k).

A325007 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 18, 10, 1, 5, 40, 55, 15, 1, 6, 75, 200, 126, 21, 1, 7, 126, 560, 700, 252, 28, 1, 8, 196, 1316, 2850, 1996, 462, 36, 1, 9, 288, 2730, 9261, 11376, 5004, 792, 45, 1, 10, 405, 5160, 25480, 50127, 38550, 11440, 1287, 55, 1, 11, 550, 9075, 61776, 181027, 225225, 116160, 24310, 2002, 66, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. An achiral coloring is identical to its reflection.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
1  2   3     4      5      6       7        8         9        10 ...
1  6  18    40     75    126     196      288       405       550 ...
1 10  55   200    560   1316    2730     5160      9075     15070 ...
1 15 126   700   2850   9261   25480    61776    135675    275275 ...
1 21 252  1996  11376  50127  181027   559728   1529892   3784627 ...
1 28 462  5004  38550 225225 1053304  4119648  13942908  41918800 ...
1 36 792 11440 116160 881595 5263336 25794288 107427420 390891160 ...
For a(2,2)=6, all colorings are achiral: two with just one of the colors, two with one color on just one edge, one with opposite colors the same, and one with opposite colors different.
		

Crossrefs

Cf. A325004 (oriented), A325005 (unoriented), A325006 (chiral), A325011 (exactly k colors).
Other n-dimensional polytopes: A325001 (simplex), A325015 (orthoplex).
Rows 1-2 are A000027, A002411; column 2 is A186783(n+2).

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+2,2]+n-1,n]-Binomial[Binomial[d-n+1,2],n],{d,1,11},{n,1,d}] // Flatten
  • PARI
    a(n, k) = binomial(binomial(k+1, 2)+n-1, n) - binomial(binomial(k, 2), n)
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 6 rows and 8 columns of array as follows: */
    array(6, 8) \\ Felix Fröhlich, May 30 2019

Formula

A(n,k) = binomial(binomial(k+1,2) + n-1, n) - binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2*n} A325011(n,j) * binomial(k,j).
A(n,k) = 2*A325005(n,k) - A325004(n,k) = (A325004(n,k) - 2*A325006(n,k)) / 2 = A325005(n,k) + A325006(n,k).
G.f. for row n: Sum{j=1..2*n} A325011(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
G.f. for column k: 1/(1-x)^binomial(k+1,2) - (1+x)^binomial(k,2).

A325014 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 1, 0, 10, 15, 66, 94, 0, 15, 45, 920, 97974, 1047816, 0, 21, 105, 6350, 10700090, 481141220994, 400140831558512, 0, 28, 210, 29505, 390081800, 4802390808840576, 74515656021475803734579625, 527471421741473576372948457251328, 0
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
0  1     3        6        10         15          21           28 ...
0  0     3       15        45        105         210          378 ...
0  1    66      920      6350      29505      106036       317856 ...
0 94 97974 10700090 390081800 7280687610 86121007714 730895668104 ...
For A(2,3)=3, each square has one of the three colors on two adjacent edges.
		

Crossrefs

Cf. A325012 (oriented), A325013 (unoriented), A325015 (achiral), A325018 (exactly k colors).
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325006 (orthotope).
Rows 1-2 are A161680, A050534.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] - CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(k,n) = A325012(n,k) - A325013(n,k) = (A325012(n,k) - A325015(n,k)) / 2 = A325013(n,k) - A325015(n,k).
A(n,k) = Sum_{j=2..2^n} A325018(n,j) * binomial(k,j).

A325013 Array read by descending antidiagonals: A(n,k) is the number of unoriented colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 10, 21, 22, 1, 15, 55, 267, 402, 1, 21, 120, 1996, 132102, 1228158, 1, 28, 231, 10375, 11756666, 484086357207, 400507806843728, 1, 36, 406, 41406, 405385550, 4805323147589984, 74515759884862073604656433, 527471432057653004017274030725792, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
Also the number of unoriented colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
1   3      6       10        15         21          28           36 ...
1   6     21       55       120        231         406          666 ...
1  22    267     1996     10375      41406      135877       384112 ...
1 402 132102 11756666 405385550 7416923886 86986719477 735192450952 ...
For A(2,2)=6, two squares have all edges the same color, two have three edges the same color, one has opposite edges the same color, and one has opposite edges different colors.
		

Crossrefs

Cf. A325012 (oriented), A325014 (chiral), A325015 (achiral), A325017 (exactly k colors).
Other n-dimensional polytopes: A325000 (simplex), A325005 (orthotope).
Rows 1-4 are A000217, A002817, A128766, A128767; column 2 is A000616.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] + CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = A325012(n,k) - A325014(n,k) = (A325012(n,k) + A325015(n,k)) / 2 = A325014(n,k) + A325015(n,k).
A(n,k) = Sum_{j=1..2^n} A325017(n,j) * binomial(k,j).

A325019 Triangle read by rows: T(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthoplex using exactly k colors. Row n has 2^n columns.

Original entry on oeis.org

1, 0, 1, 4, 3, 0, 1, 19, 141, 394, 450, 180, 0, 0, 1, 306, 33207, 921908, 10359075, 59584470, 197644440, 400752240, 505197000, 386694000, 164656800, 29937600, 0, 0, 0, 0
Offset: 1

Views

Author

Robert A. Russell, Jun 09 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. An achiral coloring is identical to its reflection. The last 2^(n-2) columns of row n are zero; there are no achiral colorings with that many colors.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthotope (cube) using exactly k colors.

Examples

			Triangle begins with T(1,1):
1  0
1  4   3   0
1 19 141 394 450 180 0 0
For T(2,3)=3, each square has one of the three colors on two opposite edges.
		

Crossrefs

Cf. A325016 (oriented), A325017 (unoriented), A325018 (chiral), A325015 (up to k colors).
Other n-dimensional polytopes: A325003 (simplex), A325011 (orthotope).

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ],MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n,MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even permutation *)
    CI1[{n_Integer}] := CI1[{{n}}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, (a37 /@ sub)/2}]]] 2^(n-1); (* odd permutation *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i - 1, 1]], s[[i - 1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[(CI1[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k (* A325012 *)
    Table[LinearSolve[Table[Binomial[i,j],{i,1,2^n},{j,1,2^n}],Table[array[n,k],{k,1,2^n}]],{n,1,6}] // Flatten

Formula

A325015(n,k) = Sum_{j=1..2^n} T(n,j) * binomial(k,j).
T(n,k) = 2*A325017(n,k) - A325016(n,k) = A325016(n,k) - 2*A325018(n,k) = A325017(n,k) - A325018(n,k).

A337897 Number of achiral colorings of the 8 triangular faces of a regular octahedron or the 8 vertices of a cube using n or fewer colors.

Original entry on oeis.org

1, 21, 201, 1076, 4025, 11901, 29841, 66256, 134001, 251725, 445401, 750036, 1211561, 1888901, 2856225, 4205376, 6048481, 8520741, 11783401, 16026900, 21474201, 28384301, 37055921, 47831376, 61100625, 77305501, 96944121
Offset: 1

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbols for the cube and regular octahedron are {4,3} and {3,4} respectively. They are mutually dual.
There are 24 elements in the automorphism group of the regular octahedron/cube that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the cube vertex (octahedron face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^4
Vertex rotation* 8 x_2^1x_6^1 Asterisk indicates that the
Edge rotation* 6 x_1^4x_2^2 operation is followed by an
Small face rotation* 3 x_4^2 inversion.
Large face rotation* 6 x_2^4

Crossrefs

Cf. A000543 (oriented), A128766 (unoriented), A337896 (chiral).
Other elements: A331351 (edges), A337898 (cube faces, octahedron vertices).
Other polyhedra: A006003 (tetrahedron), A337962 (dodecahedron faces, icosahedron vertices), A337960 (icosahedron faces, dodecahedron vertices).
Row 3 of A337894 (orthoplex faces, orthotope peaks) and A325015 (orthotope vertices, orthoplex facets).

Programs

  • Mathematica
    Table[n^2(7+2n^2+3n^4)/12, {n,30}]

Formula

a(n) = n^2 * (7 + 2*n^2 + 3*n^4) / 12.
a(n) = 1*C(n,1) + 19*C(n,2) + 141*C(n,3) + 394*C(n,4) + 450*C(n,5) + 180*C(n,6), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A128766(n) - A000543(n) = A000543(n) - 2*A337896(n) = A128766(n) - A337896(n).
G.f.: x * (1+x) * (1 + 13*x + 62*x^2 + 13*x^3 + x^4) / (1-x)^7.

A337410 Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the edges of a regular n-dimensional orthotope (hypercube) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 18, 70, 1, 5, 40, 1407, 93024, 1, 6, 75, 12480, 294157089, 47823602694208, 1, 7, 126, 69050, 91983927296, 67514530382043163023924, 443077371786837979607993095063601152, 1
Offset: 1

Views

Author

Robert A. Russell, Aug 26 2020

Keywords

Comments

An achiral arrangement is identical to its reflection. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is a cube with 12 edges. The number of edges is n*2^(n-1).
Also the number of achiral colorings of the regular (n-2)-dimensional simplexes in a regular n-dimensional orthoplex.

Examples

			Table begins with T(1,1):
1  2    3     4     5      6      7       8       9       10 ...
1  6   18    40    75    126    196     288     405      550 ...
1 70 1407 12480 69050 281946 931490 2632512 6598935 15041950 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
		

Crossrefs

Cf. A337407 (oriented), A337408 (unoriented), A337409 (chiral).
Rows 1-4 are A000027, A002411, A331351, A331361.
Cf. A327086 (simplex edges), A337414 (orthoplex edges), A325015 (orthotope vertices).

Programs

  • Mathematica
    m=1; (* dimension of color element, here an edge *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],0,(per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,7}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = 2*A337408(n,k) - A337407(n,k) = A337407(n,k) - 2*A337409(n,k) = A337408(n,k) - A337409(n,k).

A337955 Number of achiral colorings of the 16 tetrahedral facets of a hyperoctahedron or of the 16 vertices of a tesseract.

Original entry on oeis.org

1, 308, 34128, 1056576, 15303750, 136236276, 865711763, 4296782848, 17656466751, 62510672500, 196174554026, 557301826368, 1456216515468, 3543525156276, 8109415963125, 17592637669376, 36414622551373
Offset: 1

Views

Author

Robert A. Russell, Oct 03 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual. There are 192 elements in the automorphism group of the tesseract that are not in its rotation group. Each involves a permutation of the axes that can be associated with a partition of 4 based on the conjugacy class of the permutation. This table shows the hyperoctahedron facet (tesseract vertex) cycle indices for each member of such a class. The first formula is obtained by averaging these cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
4 6 8x_1^2x_2^1x_4^3
31 8 8x_2^2x_6^2
22 3 8x_4^4
211 6 2x_1^8x_2^4 + 2x_2^8 + 4x_4^4
1111 1 8x_2^8

Crossrefs

Cf. A337952 (oriented), A128767 (unoriented), A337954 (chiral).
Other elements: A331361 (tesseract edges, hyperoctahedron faces), A331357 (tesseract faces, hyperoctahedron edges), A337958 (tesseract facets, hyperoctahedron vertices).
Other polychora: A132366(n-1) (4-simplex facets/vertices), A338951 (24-cell), A338967 (120-cell, 600-cell).
Row 4 of A325015 (orthoplex facets, orthotope vertices).

Programs

  • Mathematica
    Table[(3n^12+5n^8+12n^6+28n^4)/48,{n,30}]

Formula

a(n) = n^4 * (3*n^8 + 5*n^4 + 12*n^2 + 28) / 48.
a(n) = 1*C(n,1) + 306*C(n,2) + 33207*C(n,3) + 921908*C(n,4) + 10359075*C(n,5) + 59584470*C(n,6) + 197644440*C(n,7) + 400752240*C(n,8) + 505197000*C(n,9) + 386694000*C(n,10) + 164656800*C(n,11) + 29937600*C(n,12), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A128767(n) - A337952(n) = A337952(n) - 2*A337954(n) = A128767(n) - A337954(n).

A337890 Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the square faces of a regular n-dimensional orthotope (hypercube) using k or fewer colors.

Original entry on oeis.org

1, 2, 1, 3, 10, 1, 4, 55, 8200, 1, 5, 200, 9080559, 199556208371776, 1, 6, 560, 1503323520, 1370366433970979158839987, 388032967149969852957120195660938882809069568, 1
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

An achiral arrangement is identical to its reflection. Each face is a square bounded by four edges. For n=2, the figure is a square with one face. For n=3, the figure is a cube with 6 faces. For n=4, the figure is a tesseract with 24 faces. The number of faces is 2^(n-2)*C(n,2).
Also the number of chiral pairs of colorings of peaks of an n-dimensional orthoplex. A peak is an (n-3)-dimensional simplex.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

Examples

			Array begins with T(2,1):
1    2       3          4           5             6              7 ...
1   10      55        200         560          1316           2730 ...
1 8200 9080559 1503323520 81461669375 2146080958056 34228350856910 ...
		

Crossrefs

Cf. A337887 (oriented), A337888 (unoriented), A337889 (chiral).
Other elements: A325015 (vertices), A337410 (edges).
Other polytopes: A337886 (simplex), A337894 (orthoplex).
Rows 2-4 are A000027, A337897, A331357.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a square face *)
    Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
    FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
    CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],0,(per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);
    PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
    array[n_, k_] := row[n] /. b -> k
    Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten

Formula

T(n,k) = 2*A337888(n,k) - A337887(n,k) = A337887(n,k) - 2*A337889(n,k) = A337888(n,k) - A337889(n,k).
Showing 1-10 of 10 results.