A325010 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.
0, 1, 0, 0, 3, 3, 0, 0, 1, 16, 30, 15, 0, 0, 0, 15, 135, 330, 315, 105, 0, 0, 0, 6, 222, 1581, 4410, 5880, 3780, 945, 0, 0, 0, 1, 205, 3760, 23604, 71078, 116550, 107100, 51975, 10395, 0, 0, 0, 0, 120, 5715, 73755, 427260, 1351980, 2552130, 2962575, 2079000, 810810, 135135
Offset: 1
Examples
The triangle begins with T(1,1): 0 1 0 0 3 3 0 0 1 16 30 15 0 0 0 15 135 330 315 105 0 0 0 6 222 1581 4410 5880 3780 945 0 0 0 1 205 3760 23604 71078 116550 107100 51975 10395 0 0 0 0 120 5715 73755 427260 1351980 2552130 2962575 2079000 810810 135135 For T(2,3)=3, the three squares have the two edges with the same color adjacent.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..132
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[j-k-1,j]Binomial[Binomial[k-j,2],n],{j,0,k-2}],{n,1,10},{k,1,2n}] // Flatten
Comments