cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325017 Triangle read by rows: T(n,k) is the number of unoriented colorings of the facets of a regular n-dimensional orthoplex using exactly k colors. Row n has 2^n columns.

Original entry on oeis.org

1, 1, 1, 4, 6, 3, 1, 20, 204, 1056, 2850, 4080, 2940, 840, 1, 400, 130899, 11230666, 347919225, 5158324560, 43174480650, 225086553300, 775894225050, 1831178115900, 3008073915000, 3439243962000, 2685727044000, 1366701336000, 408648240000, 54486432000
Offset: 1

Views

Author

Robert A. Russell, Jun 09 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
Also the number of unoriented colorings of the vertices of a regular n-dimensional orthotope (cube) using exactly k colors.

Examples

			Triangle begins with T(1,1):
1  1
1  4   6    3
1 20 204 1056 2850 4080 2940 840
For T(2,2)=4, two squares have three edges the same color, one has opposite edges the same color, and one has opposite edges different colors.
		

Crossrefs

Cf. A325016 (oriented), A325018 (chiral), A325019 (achiral), A325013 (up to k colors).
Other n-dimensional polytopes: A007318(n,k-1) (simplex), A325009 (orthotope).

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ],MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, (a37 /@ sub)/2}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] + CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k (* A325013 *)
    Table[LinearSolve[Table[Binomial[i,j],{i,1,2^n},{j,1,2^n}],Table[array[n,k],{k,1,2^n}]],{n,1,6}] // Flatten

Formula

A325013(n,k) = Sum_{j=1..2^n} T(n,j) * binomial(k,j).
T(n,k) = A325016(n,k) - A325018(n,k) = (A325016(n,k) + A325019(n,k)) / 2 = A325018(n,k) + A325019(n,k).