A325021 Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is an integer h, where k-tau(k) is the number of nondivisors of k (A049820), tau(k) is the number of divisors of k (A000005), and sigma(k) is the sum of the divisors of k (A000203).
1, 6, 28, 496, 672, 8128, 30240, 32760, 332640, 695520, 2178540, 17428320, 23569920, 33550336, 45532800, 52141320, 142990848, 164989440, 318729600, 447828480, 481572000, 500860800, 540277920, 623397600, 644271264, 714954240, 995248800, 1047254400, 1307124000
Offset: 1
Keywords
Examples
Harmonic number 28 is a term because 28*tau(28)/sigma(28) = 28*6/56 = 3 (integer) and simultaneously 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..255 (terms below 10^14)
Programs
-
Magma
[n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
-
Mathematica
Select[Range[10^6], And[IntegerQ@ HarmonicMean@ #2, IntegerQ[#1 (#1 - #3)/#4]] & @@ Join[{#}, {Divisors@ #}, DivisorSigma[{0, 1}, #]] &] (* Michael De Vlieger, Mar 27 2019 *)
-
PARI
isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && !frac(m*(m-d)/s); \\ Michel Marcus, Mar 27 2019
-
Python
from itertools import count, islice from math import prod from functools import reduce from sympy import factorint def A325021_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue,1)): f = factorint(n) s = prod((p**(e+1)-1)//(p-1) for p, e in f.items()) if not (n*n%s or reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s): yield n A325021_list = list(islice(A325021_gen(),10)) # Chai Wah Wu, Feb 14 2023
Comments