cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325022 Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is not an integer, where k-tau(k) = the number of nondivisors of k (A049820), tau(k) = the number of divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

140, 270, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 360360, 539400, 726180, 753480, 950976, 1089270, 1421280, 1539720, 2229500, 2290260, 2457000, 2845800, 4358600, 4713984, 4754880, 5772200, 6051500
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2019

Keywords

Comments

Numbers m such that sigma(m) divides m*tau(m) but sigma(m) does not divide m*(m-tau(m)).
Complement of A325021 with respect to A001599.

Examples

			140 is a term because 140*(140-tau(140))/sigma(140) = 140*(140-12)/336 = 160/3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and not IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
    
  • Mathematica
    Select[Range[10^5], And[IntegerQ@ HarmonicMean@ #4, ! IntegerQ[#1 (#1 - #2)/#3]] & @@ Append[{#}~Join~DivisorSigma[{0, 1}, #], Divisors@ #] &] (* Michael De Vlieger, Mar 30 2019 *)
  • PARI
    isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && frac(m*(m-d)/s); \\ Michel Marcus, Mar 28 2019
    
  • Python
    from itertools import count, islice
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A325022_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if n*n%s and not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s:
                yield n
    A325022_list = list(islice(A325022_gen(),10)) # Chai Wah Wu, Feb 14 2023