cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325029 a(n) = Sum_{d|n} (sigma(d)*pod(d)) where sigma(k) = the sum of the divisors of k (A000203) and pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 7, 13, 63, 31, 451, 57, 1023, 364, 1837, 133, 48891, 183, 4767, 5443, 32767, 307, 228250, 381, 337893, 14181, 17563, 553, 19956411, 3906, 28581, 29524, 1234135, 871, 58327681, 993, 2097151, 52417, 62737, 58887, 917347026, 1407, 87027, 85371, 230738853, 1723
Offset: 1

Views

Author

Jaroslav Krizek, Apr 25 2019

Keywords

Comments

n divides a(n) for n = 1, 39, 793, 2800, 5289, 6601, 15747, 41041, ...

Examples

			a(6) = sigma(1)*pod(1) + sigma(2)*pod(2) + sigma(3)*pod(3) + sigma(6)*pod(6) = (1*1) + (3*2) + (4*3) + (12*36) = 451.
		

Crossrefs

Programs

  • Magma
    [&+[&+ [c: c in Divisors(d)] * &*[c: c in Divisors(d)]: d in Divisors(n)]: n in [1..100]]
    
  • PARI
    a(n) = sumdiv(n, d, my(dd=divisors(d)); vecsum(dd)*vecprod(dd)); \\ Michel Marcus, Apr 25 2019

Formula

a(p) = p^2 + p + 1 for p = primes (A000040).