A325043 Heinz numbers of integer partitions, with at least three parts, whose product of parts is one fewer than their sum.
18, 60, 168, 216, 400, 528, 1248, 2240, 2880, 3264, 7296, 14080, 17664, 25088, 32256, 41472, 44544, 66560, 95232, 153600, 227328, 315392, 348160, 405504, 503808, 1056768, 1556480, 2310144, 2981888, 3833856, 5210112, 6881280, 7536640, 7929856, 8847360, 11599872
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 18: {1,2,2} 60: {1,1,2,3} 168: {1,1,1,2,4} 216: {1,1,1,2,2,2} 400: {1,1,1,1,3,3} 528: {1,1,1,1,2,5} 1248: {1,1,1,1,1,2,6} 2240: {1,1,1,1,1,1,3,4} 2880: {1,1,1,1,1,1,2,2,3} 3264: {1,1,1,1,1,1,2,7} 7296: {1,1,1,1,1,1,1,2,8} 14080: {1,1,1,1,1,1,1,1,3,5} 17664: {1,1,1,1,1,1,1,1,2,9} 25088: {1,1,1,1,1,1,1,1,1,4,4} 32256: {1,1,1,1,1,1,1,1,1,2,2,4} 41472: {1,1,1,1,1,1,1,1,1,2,2,2,2} 44544: {1,1,1,1,1,1,1,1,1,2,10} 66560: {1,1,1,1,1,1,1,1,1,1,3,6} 95232: {1,1,1,1,1,1,1,1,1,1,2,11}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[10000],And[PrimeOmega[#]>2,Times@@primeMS[#]==Total[primeMS[#]]-1]&]
Formula
a(n) = 2 * A301988(n).
Extensions
More terms from Jinyuan Wang, Jun 27 2020
Comments