cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325043 Heinz numbers of integer partitions, with at least three parts, whose product of parts is one fewer than their sum.

Original entry on oeis.org

18, 60, 168, 216, 400, 528, 1248, 2240, 2880, 3264, 7296, 14080, 17664, 25088, 32256, 41472, 44544, 66560, 95232, 153600, 227328, 315392, 348160, 405504, 503808, 1056768, 1556480, 2310144, 2981888, 3833856, 5210112, 6881280, 7536640, 7929856, 8847360, 11599872
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers with at least three prime factors (counted with multiplicity) whose product of prime indices (A003963) is one fewer than their sum of prime indices (A056239).

Examples

			The sequence of terms together with their prime indices begins:
     18: {1,2,2}
     60: {1,1,2,3}
    168: {1,1,1,2,4}
    216: {1,1,1,2,2,2}
    400: {1,1,1,1,3,3}
    528: {1,1,1,1,2,5}
   1248: {1,1,1,1,1,2,6}
   2240: {1,1,1,1,1,1,3,4}
   2880: {1,1,1,1,1,1,2,2,3}
   3264: {1,1,1,1,1,1,2,7}
   7296: {1,1,1,1,1,1,1,2,8}
  14080: {1,1,1,1,1,1,1,1,3,5}
  17664: {1,1,1,1,1,1,1,1,2,9}
  25088: {1,1,1,1,1,1,1,1,1,4,4}
  32256: {1,1,1,1,1,1,1,1,1,2,2,4}
  41472: {1,1,1,1,1,1,1,1,1,2,2,2,2}
  44544: {1,1,1,1,1,1,1,1,1,2,10}
  66560: {1,1,1,1,1,1,1,1,1,1,3,6}
  95232: {1,1,1,1,1,1,1,1,1,1,2,11}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],And[PrimeOmega[#]>2,Times@@primeMS[#]==Total[primeMS[#]]-1]&]

Formula

a(n) = 2 * A301988(n).

Extensions

More terms from Jinyuan Wang, Jun 27 2020