A325045 Number of factorizations of n whose conjugate as an integer partition has no ones.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0
Offset: 1
Keywords
Examples
The initial terms count the following factorizations: 1: {} 4: 2*2 8: 2*2*2 9: 3*3 16: 2*2*2*2 16: 4*4 18: 2*3*3 25: 5*5 27: 3*3*3 32: 2*2*2*2*2 32: 2*4*4 36: 2*2*3*3 36: 6*6 48: 3*4*4 49: 7*7 50: 2*5*5 54: 2*3*3*3 64: 2*2*2*2*2*2 64: 2*2*4*4 64: 4*4*4 64: 8*8
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[facs[n],FreeQ[conj[#],1]&]],{n,1,100}]
-
PARI
A325045(n, m=n, facs=List([])) = if(1==n, (0==#facs || (#facs>=2 && facs[1]==facs[2])), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A325045(n/d, d, newfacs))); (s)); \\ Antti Karttunen, May 03 2022
Extensions
More terms from Antti Karttunen, May 03 2022
Comments