cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325045 Number of factorizations of n whose conjugate as an integer partition has no ones.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2019

Keywords

Comments

After a(1) = 1, a(n) is the number of factorizations of n with at least two factors, the largest two of which are equal.

Examples

			The initial terms count the following factorizations:
    1: {}
    4: 2*2
    8: 2*2*2
    9: 3*3
   16: 2*2*2*2
   16: 4*4
   18: 2*3*3
   25: 5*5
   27: 3*3*3
   32: 2*2*2*2*2
   32: 2*4*4
   36: 2*2*3*3
   36: 6*6
   48: 3*4*4
   49: 7*7
   50: 2*5*5
   54: 2*3*3*3
   64: 2*2*2*2*2*2
   64: 2*2*4*4
   64: 4*4*4
   64: 8*8
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[facs[n],FreeQ[conj[#],1]&]],{n,1,100}]
  • PARI
    A325045(n, m=n, facs=List([])) = if(1==n, (0==#facs || (#facs>=2 && facs[1]==facs[2])), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A325045(n/d, d, newfacs))); (s)); \\ Antti Karttunen, May 03 2022

Extensions

More terms from Antti Karttunen, May 03 2022