A325057 Number of positive integers k <= prime(n)# so that (k mod p_1) < (k mod p_2) < ... < (k mod p_n).
1, 2, 3, 7, 19, 94, 381, 2217, 10248, 64082, 572741, 3590815, 33731134, 291308123, 1896596488, 14675287694, 147847569839, 1642854121867, 12717640104203, 134707566446733, 1285768348848054, 9334472487460317, 97284913917125312, 922382339920122509, 10370484766702974615
Offset: 0
Keywords
Examples
a(3) = 7: Solutions for k that have increasing remainders modulo the first 3 primes: k modulo 2 3 5 ===================== 22 0 < 1 < 2 28 0 < 1 < 3 4 0 < 1 < 4 8 0 < 2 < 3 14 0 < 2 < 4 23 1 < 2 < 3 29 1 < 2 < 4
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-1, j-1), j=1..min(i, ithprime(n)))) end: a:= n-> b(n, infinity): seq(a(n), n=0..24); # Alois P. Heinz, Jan 04 2023
-
Python
from sympy import prime def f(k, r, n): if k==n: return prime(k)-r global cache ; args = (k, r) if args in cache: return cache[args] rv = f(k+1, r+1, n) if r < (prime(k)-1): rv += f(k, r+1, n) cache[args]=rv ; return rv def A325057(n): global cache ; cache = {} return f(1, 0, n)
Extensions
Name edited and a(0)=1 prepended by Alois P. Heinz, Jan 04 2023
Comments