A325092 Heinz numbers of integer partitions of powers of 2 into powers of 2.
1, 2, 3, 4, 7, 9, 12, 16, 19, 49, 53, 63, 81, 84, 108, 112, 131, 144, 192, 256, 311, 361, 719, 931, 1197, 1539, 1596, 1619, 2052, 2128, 2401, 2736, 2809, 3087, 3648, 3671, 3969, 4116, 4864, 5103, 5292, 5488, 6561, 6804, 7056, 8161, 8748, 9072, 9408, 11664, 12096
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 4: {1,1} 7: {4} 9: {2,2} 12: {1,1,2} 16: {1,1,1,1} 19: {8} 49: {4,4} 53: {16} 63: {2,2,4} 81: {2,2,2,2} 84: {1,1,2,4} 108: {1,1,2,2,2} 112: {1,1,1,1,4} 131: {32} 144: {1,1,1,1,2,2} 192: {1,1,1,1,1,1,2} 256: {1,1,1,1,1,1,1,1} 311: {64}
Crossrefs
Programs
-
Maple
q:= n-> andmap(t-> t=2^ilog2(t), (l-> [l[], add(i, i=l)])( map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))): select(q, [$1..15000])[]; # Alois P. Heinz, Mar 28 2019
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pow2Q[n_]:=IntegerQ[Log[2,n]]; Select[Range[1000],#==1||pow2Q[Total[primeMS[#]]]&&And@@pow2Q/@primeMS[#]&]
Comments