A325107 Number of subsets of {1...n} with no binary containments.
1, 2, 4, 5, 10, 13, 18, 19, 38, 52, 77, 83, 133, 147, 166, 167, 334, 482, 764, 848, 1465, 1680, 1987, 2007, 3699, 4413, 5488, 5572, 7264, 7412, 7579, 7580, 15160, 22573, 37251, 42824, 77387, 92863, 116453, 118461, 227502, 286775, 382573, 392246, 555661, 574113
Offset: 0
Keywords
Examples
The a(0) = 1 through a(6) = 18 subsets: {} {} {} {} {} {} {} {1} {1} {1} {1} {1} {1} {2} {2} {2} {2} {2} {1,2} {3} {3} {3} {3} {1,2} {4} {4} {4} {1,2} {5} {5} {1,4} {1,2} {6} {2,4} {1,4} {1,2} {3,4} {2,4} {1,4} {1,2,4} {2,5} {1,6} {3,4} {2,4} {3,5} {2,5} {1,2,4} {3,4} {3,5} {3,6} {5,6} {1,2,4} {3,5,6}
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..129, (terms up to a(71) from Alois P. Heinz)
Crossrefs
Programs
-
Maple
c:= proc() option remember; local i, x, y; x, y:= map(n-> Bits[Split](n), [args])[]; for i to nops(x) do if x[i]=1 and y[i]=0 then return false fi od; true end: b:= proc(n, s) option remember; `if`(n=0, 1, b(n-1, s)+ `if`(ormap(i-> c(n, i), s), 0, b(n-1, s union {n}))) end: a:= n-> b(n, {}): seq(a(n), n=0..34); # Alois P. Heinz, Mar 28 2019
-
Mathematica
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[Subsets[Range[n]],stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]],{n,0,13}]
Formula
a(2^n - 1) = A014466(n).
Extensions
a(16)-a(45) from Alois P. Heinz, Mar 28 2019
Comments