A325142 a(n) = k if (n - k, n + k) is the centered Goldbach partition of 2n if it exists and -1 otherwise.
-1, -1, 0, 0, 1, 0, 1, 0, 3, 2, 3, 0, 1, 0, 3, 2, 3, 0, 1, 0, 3, 2, 9, 0, 5, 6, 3, 4, 9, 0, 1, 0, 9, 4, 3, 6, 5, 0, 9, 2, 3, 0, 1, 0, 3, 2, 15, 0, 5, 12, 3, 8, 9, 0, 7, 12, 3, 4, 15, 0, 1, 0, 9, 4, 3, 6, 5, 0, 15, 2, 3, 0, 1, 0, 15, 4, 3, 6, 5, 0, 9, 2, 15, 0
Offset: 0
Keywords
Examples
a(162571) = 78 because 325142 = 162493 + 162649 and there is no k, 0 <= k < 78, such that (162571 - k, 162571 + k) is a Goldbach partition of 325142.
Links
- Peter Luschny, Table of n, a(n) for n = 0..10000
Programs
-
Maple
a := proc(n) local k; for k from 0 to n do if isprime(n + k) and isprime(n - k) then return k fi od: -1 end: seq(a(n), n=0..83);
-
Mathematica
a[n_] := Module[{k}, For[k = 0, k <= n, k++, If[PrimeQ[n+k] && PrimeQ[n-k], Return[k]]]; -1]; Table[a[n], {n, 0, 83}] (* Jean-François Alcover, Jul 06 2019, from Maple *)
-
PARI
a(n) = for(k=0, n, if(ispseudoprime(n+k) && ispseudoprime(n-k), return(k))); -1 \\ Felix Fröhlich, May 02 2019
-
PARI
apply( A325142(n)=-!forprime(p=n,2*n, isprime(n*2-p)&&return(p-n)), [0..99]) \\ M. F. Hasler, May 02 2019
Comments