A325166 Size of the internal portion of the integer partition with Heinz number n.
0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 3, 0, 0, 2, 1, 3, 2, 0, 1, 2, 1, 0, 3, 0, 1, 3, 1, 0, 1, 3, 3, 2, 1, 0, 3, 3, 1, 2, 1, 0, 3, 0, 1, 3, 0, 3, 3, 0, 1, 2, 4, 0, 2, 0, 1, 4, 1, 4, 3, 0, 1, 3, 1, 0, 3, 3, 1, 2, 1, 0, 4, 4, 1, 2, 1, 3, 1, 0, 4, 3, 3, 0, 3, 0, 1, 5
Offset: 1
Keywords
Examples
The partition with Heinz number 7865 is (6,5,5,3), with diagram o o o o o o o o o o o o o o o o o o o with internal portion o o o o o o o o o o o o of size 12, so a(7865) = 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[If[n==1,0,Total[primeMS[n]]-Max[primeMS[n]]-Length[primeMS[n]]+Length[Union[primeMS[n]]]],{n,100}]
-
PARI
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); } A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); A325166(n) = (A056239(n) - A061395(n) - bigomega(n) + omega(n)); \\ Antti Karttunen, Apr 14 2019
Extensions
More terms from Antti Karttunen, Apr 14 2019
Comments