cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325166 Size of the internal portion of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 3, 0, 0, 2, 1, 3, 2, 0, 1, 2, 1, 0, 3, 0, 1, 3, 1, 0, 1, 3, 3, 2, 1, 0, 3, 3, 1, 2, 1, 0, 3, 0, 1, 3, 0, 3, 3, 0, 1, 2, 4, 0, 2, 0, 1, 4, 1, 4, 3, 0, 1, 3, 1, 0, 3, 3, 1, 2, 1, 0, 4, 4, 1, 2, 1, 3, 1, 0, 4, 3, 3, 0, 3, 0, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The internal portion of an integer partition consists of all squares in the Young diagram that have a square both directly below and directly to the right.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition with Heinz number 7865 is (6,5,5,3), with diagram
  o o o o o o
  o o o o o
  o o o o o
  o o o
with internal portion
  o o o o o
  o o o o
  o o o
of size 12, so a(7865) = 12.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Total[primeMS[n]]-Max[primeMS[n]]-Length[primeMS[n]]+Length[Union[primeMS[n]]]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A325166(n) = (A056239(n) - A061395(n) - bigomega(n) + omega(n)); \\ Antti Karttunen, Apr 14 2019

Formula

a(n) = A056239(n) - A061395(n) - A001222(n) + A001221(n).
a(n) = A056239(n) - A297113(n).

Extensions

More terms from Antti Karttunen, Apr 14 2019