A325179 Heinz numbers of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.
3, 4, 6, 15, 18, 25, 27, 30, 45, 50, 75, 175, 245, 250, 343, 350, 375, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 3773, 4802, 5929, 7203, 7546, 9317, 11319, 11858, 12005, 14641, 16807, 17787, 18634, 18865, 26411, 27951, 29282, 29645, 41503, 43923, 46585
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 3: {2} 4: {1,1} 6: {1,2} 15: {2,3} 18: {1,2,2} 25: {3,3} 27: {2,2,2} 30: {1,2,3} 45: {2,2,3} 50: {1,3,3} 75: {2,3,3} 175: {3,3,4} 245: {3,4,4} 250: {1,3,3,3} 343: {4,4,4} 350: {1,3,3,4} 375: {2,3,3,3} 490: {1,3,4,4} 525: {2,3,3,4} 625: {3,3,3,3}
Links
- Gus Wiseman, Young diagrams for the first 32 terms.
Crossrefs
Programs
-
Mathematica
durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]]; codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]]; Select[Range[1000],codurf[#]-durf[#]==1&]
Comments