A325178 Difference between the length of the minimal square containing and the maximal square contained in the Young diagram of the integer partition with Heinz number n.
0, 0, 1, 1, 2, 1, 3, 2, 0, 2, 4, 2, 5, 3, 1, 3, 6, 1, 7, 2, 2, 4, 8, 3, 1, 5, 1, 3, 9, 1, 10, 4, 3, 6, 2, 2, 11, 7, 4, 3, 12, 2, 13, 4, 1, 8, 14, 4, 2, 1, 5, 5, 15, 2, 3, 3, 6, 9, 16, 2, 17, 10, 2, 5, 4, 3, 18, 6, 7, 2, 19, 3, 20, 11, 1, 7, 3, 4, 21, 4, 2, 12
Offset: 1
Keywords
Examples
The partition (3,3,2,1) has Heinz number 150 and diagram o o o o o o o o o containing maximal square o o o o and contained in minimal square o o o o o o o o o o o o o o o o so a(150) = 4 - 2 = 2.
References
- Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.
Links
- Wikipedia, Durfee square.
Crossrefs
Programs
-
Mathematica
durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]]; codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]]; Table[codurf[n]-durf[n],{n,100}]
Comments