cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A325178 Difference between the length of the minimal square containing and the maximal square contained in the Young diagram of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 2, 0, 2, 4, 2, 5, 3, 1, 3, 6, 1, 7, 2, 2, 4, 8, 3, 1, 5, 1, 3, 9, 1, 10, 4, 3, 6, 2, 2, 11, 7, 4, 3, 12, 2, 13, 4, 1, 8, 14, 4, 2, 1, 5, 5, 15, 2, 3, 3, 6, 9, 16, 2, 17, 10, 2, 5, 4, 3, 18, 6, 7, 2, 19, 3, 20, 11, 1, 7, 3, 4, 21, 4, 2, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition (3,3,2,1) has Heinz number 150 and diagram
  o o o
  o o o
  o o
  o
containing maximal square
  o o
  o o
and contained in minimal square
  o o o o
  o o o o
  o o o o
  o o o o
so a(150) = 4 - 2 = 2.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.

Crossrefs

Positions of zeros are A062457. Positions of 1's are A325179. Positions of 2's are A325180.

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];
    Table[codurf[n]-durf[n],{n,100}]

Formula

a(n) = A263297(n) - A257990(n).

A325192 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is k.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 2, 2, 0, 0, 2, 1, 2, 2, 0, 0, 3, 2, 2, 2, 2, 0, 0, 2, 4, 3, 2, 2, 2, 0, 0, 1, 7, 4, 4, 2, 2, 2, 0, 1, 0, 6, 8, 5, 4, 2, 2, 2, 0, 0, 2, 5, 11, 8, 6, 4, 2, 2, 2, 0, 0, 3, 4, 12, 12, 9, 6, 4, 2, 2, 2, 0, 0, 4, 5, 13, 17, 12, 10, 6, 4, 2, 2, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.

Examples

			Triangle begins:
  1
  1  0
  0  2  0
  0  1  2  0
  1  0  2  2  0
  0  2  1  2  2  0
  0  3  2  2  2  2  0
  0  2  4  3  2  2  2  0
  0  1  7  4  4  2  2  2  0
  1  0  6  8  5  4  2  2  2  0
  0  2  5 11  8  6  4  2  2  2  0
  0  3  4 12 12  9  6  4  2  2  2  0
  0  4  5 13 17 12 10  6  4  2  2  2  0
  0  3  9 12 20 18 13 10  6  4  2  2  2  0
  0  2 12 15 23 25 18 14 10  6  4  2  2  2  0
  0  1 15 19 26 30 26 19 14 10  6  4  2  2  2  0
Row 9 counts the following partitions (empty columns not shown):
   333   432    54      63       72        711       81         9
         441    522     621      6111      3111111   21111111   111111111
         3222   531     51111    411111
         3321   5211    222111   2211111
         4221   22221   321111
         4311   32211
                33111
                42111
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.

Crossrefs

Row sums are A000041. Column k = 1 is A325181. Column k = 2 is A325182.

Programs

  • Mathematica
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    codurf[ptn_]:=Max[Length[ptn],Max[ptn]];
    Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); if(n==0, r[1]=1, forpart(p=n, my(c=1); while(c<#p && cAndrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A368985(n) - A115995(n). - Andrew Howroyd, Jan 12 2024

A325196 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.

Original entry on oeis.org

3, 4, 9, 10, 12, 15, 18, 20, 42, 45, 50, 60, 63, 70, 75, 84, 90, 100, 105, 126, 140, 150, 294, 315, 330, 350, 420, 441, 462, 490, 495, 525, 550, 588, 630, 660, 693, 700, 735, 770, 825, 882, 924, 980, 990, 1050, 1100, 1155, 1386, 1470, 1540, 1650, 2730, 3234
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325191.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    4: {1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   42: {1,2,4}
   45: {2,2,3}
   50: {1,3,3}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
  100: {1,1,3,3}
  105: {2,3,4}
  126: {1,2,2,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==1&]

A325191 Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.

Original entry on oeis.org

0, 0, 2, 0, 3, 3, 0, 4, 6, 4, 0, 5, 10, 10, 5, 0, 6, 15, 20, 15, 6, 0, 7, 21, 35, 35, 21, 7, 0, 8, 28, 56, 70, 56, 28, 8, 0, 9, 36, 84, 126, 126, 84, 36, 9, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 0, 11, 55, 165, 330, 462
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325196.
Under the Bulgarian solitaire step, these partitions form cycles of length >= 2. Length >= 2 means not the length=1 self-loop which occurs from the triangular partition when n is a triangular number. See A074909 for self-loops included. - Kevin Ryde, Sep 27 2019

Examples

			The a(2) = 2 through a(12) = 10 partitions (empty columns not shown):
  (2)   (22)   (32)   (322)   (332)   (432)   (4322)   (4332)
  (11)  (31)   (221)  (331)   (422)   (3321)  (4331)   (4422)
        (211)  (311)  (421)   (431)   (4221)  (4421)   (4431)
                      (3211)  (3221)  (4311)  (5321)   (5322)
                              (3311)          (43211)  (5331)
                              (4211)                   (5421)
                                                       (43221)
                                                       (43311)
                                                       (44211)
                                                       (53211)
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otb[#]+1==otbmax[#]&]],{n,0,30}]
  • PARI
    a(n) = my(t=ceil(sqrtint(8*n+1)/2), r=n-t*(t-1)/2); if(r==0,0, binomial(t,r)); \\ Kevin Ryde, Sep 27 2019

Formula

Positions of zeros are A000217 = n * (n + 1) / 2.
a(n) = A074909(n) - A010054(n). - Kevin Ryde, Sep 27 2019

A325180 Heinz number of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 2.

Original entry on oeis.org

5, 8, 10, 12, 20, 21, 35, 36, 42, 49, 54, 60, 63, 70, 81, 84, 90, 98, 100, 105, 126, 135, 140, 147, 150, 189, 196, 210, 225, 275, 294, 315, 385, 441, 500, 539, 550, 605, 700, 750, 770, 825, 847, 980, 1050, 1078, 1100, 1125, 1155, 1210, 1250, 1331, 1372, 1375
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325182.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    5: {3}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   20: {1,1,3}
   21: {2,4}
   35: {3,4}
   36: {1,1,2,2}
   42: {1,2,4}
   49: {4,4}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   81: {2,2,2,2}
   84: {1,1,2,4}
   90: {1,2,2,3}
   98: {1,4,4}
  100: {1,1,3,3}
  105: {2,3,4}
		

Crossrefs

Numbers k such that A263297(k) - A257990(k) = 2.
Positions of 2's in A325178.

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];
    Select[Range[1000],codurf[#]-durf[#]==2&]

A325181 Number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.

Original entry on oeis.org

0, 0, 2, 1, 0, 2, 3, 2, 1, 0, 2, 3, 4, 3, 2, 1, 0, 2, 3, 4, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.

Examples

			The a(2) = 2 through a(15) = 1 partitions:
(2)  (21) (32)  (33)  (322) (332) (433)  (443)  (444)  (4333) (4433) (4443)
(11)      (221) (222) (331)       (3331) (3332) (3333) (4432) (4442)
                (321)                    (4331) (4332) (4441)
                                                (4431)
		

Crossrefs

Programs

  • Mathematica
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    codurf[ptn_]:=Max[Length[ptn],Max[ptn]];
    Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==1&]],{n,0,30}]

Extensions

More terms from Giovanni Resta, Apr 15 2019
Showing 1-6 of 6 results.