cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A074909 Running sum of Pascal's triangle (A007318), or beheaded Pascal's triangle read by beheaded rows.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7, 1, 8, 28, 56, 70, 56, 28, 8, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0

Views

Author

Wouter Meeussen, Oct 01 2002

Keywords

Comments

This sequence counts the "almost triangular" partitions of n. A partition is triangular if it is of the form 0+1+2+...+k. Examples: 3=0+1+2, 6=0+1+2+3. An "almost triangular" partition is a triangular partition with at most 1 added to each of the parts. Examples: 7 = 1+1+2+3 = 0+2+2+3 = 0+1+3+3 = 0+1+2+4. Thus a(7)=4. 8 = 1+2+2+3 = 1+1+3+3 = 1+1+2+4 = 0+2+3+3 = 0+2+2+4 = 0+1+3+4 so a(8)=6. - Moshe Shmuel Newman, Dec 19 2002
The "almost triangular" partitions are the ones cycled by the operation of "Bulgarian solitaire", as defined by Martin Gardner.
Start with A007318 - I (I = Identity matrix), then delete right border of zeros. - Gary W. Adamson, Jun 15 2007
Also the number of increasing acyclic functions from {1..n-k+1} to {1..n+2}. A function f is acyclic if for every subset B of the domain the image of B under f does not equal B. For example, T(3,1)=4 since there are exactly 4 increasing acyclic functions from {1,2,3} to {1,2,3,4,5}: f1={(1,2),(2,3),(3,4)}, f2={(1,2),(2,3),(3,5)}, f3={(1,2),(2,4),(3,5)} and f4={(1,3),(2,4),(4,5)}. - Dennis P. Walsh, Mar 14 2008
Second Bernoulli polynomials are (from A164555 instead of A027641) B2(n,x) = 1; 1/2, 1; 1/6, 1, 1; 0, 1/2, 3/2, 1; -1/30, 0, 1, 2, 1; 0, -1/6, 0, 5/3, 5/2, 1; ... . Then (B2(n,x)/A002260) = 1; 1/2, 1/2; 1/6, 1/2, 1/3; 0, 1/4, 1/2, 1/4; -1/30, 0, 1/3, 1/2, 1/5; 0, -1/12, 0, 5/12, 1/2, 1/6; ... . See (from Faulhaber 1631) Jacob Bernoulli Summae Potestatum (sum of powers) in A159688. Inverse polynomials are 1; -1, 2; 1, -3, 3; -1, 4, -6, 4; ... = A074909 with negative even diagonals. Reflected A053382/A053383 = reflected B(n,x) = RB(n,x) = 1; -1/2, 1; 1/6, -1, 1; 0, 1/2, -3/2, 1; ... . A074909 is inverse of RB(n,x)/A002260 = 1; -1/2, 1/2; 1/6, -1/2, 1/3; 0, 1/4, -1/2, 1/4; ... . - Paul Curtz, Jun 21 2010
A054143 is the fission of the polynomial sequence (p(n,x)) given by p(n,x) = x^n + x^(n-1) + ... + x + 1 by the polynomial sequence ((x+1)^n). See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011
Reversal of A135278. - Philippe Deléham, Feb 11 2012
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 19 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
From A238363, the operator equation d/d(:xD:)f(xD)={exp[d/d(xD)]-1}f(xD) = f(xD+1)-f(xD) follows. Choosing f(x) = x^n and using :xD:^n/n! = binomial(xD,n) and (xD)^n = Bell(n,:xD:), the Bell polynomials of A008277, it follows that the lower triangular matrix [padded A074909]
A) = [St2]*[dP]*[St1] = A048993*A132440*[padded A008275]
B) = [St2]*[dP]*[St2]^(-1)
C) = [St1]^(-1)*[dP]*[St1],
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 whereas [padded A074909]=A007318-I with I=identity matrix. - Tom Copeland, Apr 25 2014
T(n,k) generated by m-gon expansions in the case of odd m with "vertex to side" version or even m with "vertex to vertes" version. Refer to triangle expansions in A061777 and A101946 (and their companions for m-gons) which are "vertex to vertex" and "vertex to side" versions respectively. The label values at each iteration can be arranged as a triangle. Any m-gon can also be arranged as the same triangle with conditions: (i) m is odd and expansion is "vertex to side" version or (ii) m is even and expansion is "vertex to vertex" version. m*Sum_{i=1..k} T(n,k) gives the total label value at the n-th iteration. See also A247976. Vertex to vertex: A061777, A247618, A247619, A247620. Vertex to side: A101946, A247903, A247904, A247905. - Kival Ngaokrajang Sep 28 2014
From Tom Copeland, Nov 12 2014: (Start)
With P(n,x) = [(x+1)^(n+1)-x^(n+1)], the row polynomials of this entry, Up(n,x) = P(n,x)/(n+1) form an Appell sequence of polynomials that are the umbral compositional inverses of the Bernoulli polynomials B(n,x), i.e., B[n,Up(.,x)] = x^n = Up[n,B(.,x)] under umbral substitution, e.g., B(.,x)^n = B(n,x).
The e.g.f. for the Bernoulli polynomials is [t/(e^t - 1)] e^(x*t), and for Up(n,x) it's exp[Up(.,x)t] = [(e^t - 1)/t] e^(x*t).
Another g.f. is G(t,x) = log[(1-x*t)/(1-(1+x)*t)] = log[1 + t /(1 + -(1+x)t)] = t/(1-t*Up(.,x)) = Up(0,x)*t + Up(1,x)*t^2 + Up(2,x)*t^3 + ... = t + (1+2x)/2 t^2 + (1+3x+3x^2)/3 t^3 + (1+4x+6x^2+4x^3)/4 t^4 + ... = -log(1-t*P(.,x)), expressed umbrally.
The inverse, Ginv(t,x), in t of the g.f. may be found in A008292 from Copeland's list of formulas (Sep 2014) with a=(1+x) and b=x. This relates these two sets of polynomials to algebraic geometry, e.g., elliptic curves, trigonometric expansions, Chebyshev polynomials, and the combinatorics of permutahedra and their duals.
Ginv(t,x) = [e^((1+x)t) - e^(xt)] / [(1+x) * e^((1+x)t) - x * e^(xt)] = [e^(t/2) - e^(-t/2)] / [(1+x)e^(t/2) - x*e^(-t/2)] = (e^t - 1) / [1 + (1+x) (e^t - 1)] = t - (1 + 2 x) t^2/2! + (1 + 6 x + 6 x^2) t^3/3! - (1 + 14 x + 36 x^2 + 24 x^3) t^4/4! + ... = -exp[-Perm(.,x)t], where Perm(n,x) are the reverse face polynomials, or reverse f-vectors, for the permutahedra, i.e., the face polynomials for the duals of the permutahedra. Cf. A090582, A019538, A049019, A133314, A135278.
With L(t,x) = t/(1+t*x) with inverse L(t,-x) in t, and Cinv(t) = e^t - 1 with inverse C(t) = log(1 + t). Then Ginv(t,x) = L[Cinv(t),(1+x)] and G(t,x) = C[L[t,-(1+x)]]. Note L is the special linear fractional (Mobius) transformation.
Connections among the combinatorics of the permutahedra, simplices (cf. A135278), and the associahedra can be made through the Lagrange inversion formula (LIF) of A133437 applied to G(t,x) (cf. A111785 and the Schroeder paths A126216 also), and similarly for the LIF A134685 applied to Ginv(t,x) involving the simplicial Whitehouse complex, phylogenetic trees, and other structures. (See also the LIFs A145271 and A133932). (End)
R = x - exp[-[B(n+1)/(n+1)]D] = x - exp[zeta(-n)D] is the raising operator for this normalized sequence UP(n,x) = P(n,x) / (n+1), that is, R UP(n,x) = UP(n+1,x), where D = d/dx, zeta(-n) is the value of the Riemann zeta function evaluated at -n, and B(n) is the n-th Bernoulli number, or constant B(n,0) of the Bernoulli polynomials. The raising operator for the Bernoulli polynomials is then x + exp[-[B(n+1)/(n+1)]D]. [Note added Nov 25 2014: exp[zeta(-n)D] is abbreviation of exp(a.D) with (a.)^n = a_n = zeta(-n)]. - Tom Copeland, Nov 17 2014
The diagonals T(n, n-m), for n >= m, give the m-th iterated partial sum of the positive integers; that is A000027(n+1), A000217(n), A000292(n-1), A000332(n+1), A000389(n+1), A000579(n+1), A000580(n+1), A000581(n+1), A000582(n+1), ... . - Wolfdieter Lang, May 21 2015
The transpose gives the numerical coefficients of the Maurer-Cartan form matrix for the general linear group GL(n,1) (cf. Olver, but note that the formula at the bottom of p. 6 has an error--the 12 should be a 15). - Tom Copeland, Nov 05 2015
The left invariant Maurer-Cartan form polynomial on p. 7 of the Olver paper for the group GL^n(1) is essentially a binomial convolution of the row polynomials of this entry with those of A133314, or equivalently the row polynomials generated by the product of the e.g.f. of this entry with that of A133314, with some reindexing. - Tom Copeland, Jul 03 2018
From Tom Copeland, Jul 10 2018: (Start)
The first column of the inverse matrix is the sequence of Bernoulli numbers, which follows from the umbral definition of the Bernoulli polynomials (B.(0) + x)^n = B_n(x) evaluated at x = 1 and the relation B_n(0) = B_n(1) for n > 1 and -B_1(0) = 1/2 = B_1(1), so the Bernoulli numbers can be calculated using Cramer's rule acting on this entry's matrix and, therefore, from the ratios of volumes of parallelepipeds determined by the columns of this entry's square submatrices. - Tom Copeland, Jul 10 2018
Umbrally composing the row polynomials with B_n(x), the Bernoulli polynomials, gives (B.(x)+1)^(n+1) - (B.(x))^(n+1) = d[x^(n+1)]/dx = (n+1)*x^n, so multiplying this entry as a lower triangular matrix (LTM) by the LTM of the coefficients of the Bernoulli polynomials gives the diagonal matrix of the natural numbers. Then the inverse matrix of this entry has the elements B_(n,k)/(k+1), where B_(n,k) is the coefficient of x^k for B_n(x), and the e.g.f. (1/x) (e^(xt)-1)/(e^t-1). (End)

Examples

			T(4,2) = 0+0+1+3+6 = 10 = binomial(5, 2).
Triangle T(n,k) begins:
n\k 0  1  2   3   4   5   6   7   8   9 10 11
0:  1
1:  1  2
2:  1  3  3
3:  1  4  6   4
4:  1  5 10  10   5
5:  1  6 15  20  15   6
6:  1  7 21  35  35  21   7
7:  1  8 28  56  70  56  28   8
8:  1  9 36  84 126 126  84  36  9
9:  1 10 45 120 210 252 210 120 45   10
10: 1 11 55 165 330 462 462 330 165  55 11
11: 1 12 66 220 495 792 924 792 495 220 66 12
... Reformatted. - _Wolfdieter Lang_, Nov 04 2014
.
Can be seen as the square array A(n, k) = binomial(n + k + 1, n) read by descending antidiagonals. A(n, k) is the number of monotone nondecreasing functions f: {1,2,..,k} -> {1,2,..,n}. - _Peter Luschny_, Aug 25 2019
[0]  1,  1,   1,   1,    1,    1,     1,     1,     1, ... A000012
[1]  2,  3,   4,   5,    6,    7,     8,     9,    10, ... A000027
[2]  3,  6,  10,  15,   21,   28,    36,    45,    55, ... A000217
[3]  4, 10,  20,  35,   56,   84,   120,   165,   220, ... A000292
[4]  5, 15,  35,  70,  126,  210,   330,   495,   715, ... A000332
[5]  6, 21,  56, 126,  252,  462,   792,  1287,  2002, ... A000389
[6]  7, 28,  84, 210,  462,  924,  1716,  3003,  5005, ... A000579
[7]  8, 36, 120, 330,  792, 1716,  3432,  6435, 11440, ... A000580
[8]  9, 45, 165, 495, 1287, 3003,  6435, 12870, 24310, ... A000581
[9] 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, ... A000582
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n+1,k)))); # Muniru A Asiru, Jul 10 2018
    
  • Haskell
    a074909 n k = a074909_tabl !! n !! k
    a074909_row n = a074909_tabl !! n
    a074909_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [1])) [1]
    -- Reinhard Zumkeller, Feb 25 2012
    
  • Magma
    /* As triangle */ [[Binomial(n+1,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2018
    
  • Maple
    A074909 := proc(n,k)
        if k > n or k < 0 then
            0;
        else
            binomial(n+1,k) ;
        end if;
    end proc: # Zerinvary Lajos, Nov 09 2006
  • Mathematica
    Flatten[Join[{1}, Table[Sum[Binomial[k, m], {k, 0, n}], {n, 0, 12}, {m, 0, n}] ]] (* or *) Flatten[Join[{1}, Table[Binomial[n, m], {n, 12}, {m, n}]]]
  • PARI
    print1(1);for(n=1,10,for(k=1,n,print1(", "binomial(n,k)))) \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    from math import comb, isqrt
    def A074909(n): return comb(r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),n-comb(r,2)) # Chai Wah Wu, Nov 12 2024

Formula

T(n, k) = Sum_{i=0..n} C(i, n-k) = C(n+1, k).
Row n has g.f. (1+x)^(n+1)-x^(n+1).
E.g.f.: ((1+x)*e^t - x) e^(x*t). The row polynomials p_n(x) satisfy dp_n(x)/dx = (n+1)*p_(n-1)(x). - Tom Copeland, Jul 10 2018
T(n, k) = T(n-1, k-1) + T(n-1, k) for k: 0Reinhard Zumkeller, Apr 18 2005
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 27 2013
G.f. for column k (with leading zeros): x^(k-1)*(1/(1-x)^(k+1)-1), k >= 0. - Wolfdieter Lang, Nov 04 2014
Up(n, x+y) = (Up(.,x)+ y)^n = Sum_{k=0..n} binomial(n,k) Up(k,x)*y^(n-k), where Up(n,x) = ((x+1)^(n+1)-x^(n+1)) / (n+1) = P(n,x)/(n+1) with P(n,x) the n-th row polynomial of this entry. dUp(n,x)/dx = n * Up(n-1,x) and dP(n,x)/dx = (n+1)*P(n-1,x). - Tom Copeland, Nov 14 2014
The o.g.f. GF(x,t) = x / ((1-t*x)*(1-(1+t)x)) = x + (1+2t)*x^2 + (1+3t+3t^2)*x^3 + ... has the inverse GFinv(x,t) = (1+(1+2t)x-sqrt(1+(1+2t)*2x+x^2))/(2t(1+t)x) in x about 0, which generates the row polynomials (mod row signs) of A033282. The reciprocal of the o.g.f., i.e., x/GF(x,t), gives the free cumulants (1, -(1+2t) , t(1+t) , 0, 0, ...) associated with the moments defined by GFinv, and, in fact, these free cumulants generate these moments through the noncrossing partitions of A134264. The associated e.g.f. and relations to Grassmannians are described in A248727, whose polynomials are the basis for an Appell sequence of polynomials that are umbral compositional inverses of the Appell sequence formed from this entry's polynomials (distinct from the one described in the comments above, without the normalizing reciprocal). - Tom Copeland, Jan 07 2015
T(n, k) = (1/k!) * Sum_{i=0..k} Stirling1(k,i)*(n+1)^i, for 0<=k<=n. - Ridouane Oudra, Oct 23 2022

Extensions

I added an initial 1 at the suggestion of Paul Barry, which makes the triangle a little nicer but may mean that some of the formulas will now need adjusting. - N. J. A. Sloane, Feb 11 2003
Formula section edited, checked and corrected by Wolfdieter Lang, Nov 04 2014

A325188 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with origin-to-boundary graph-distance equal to k.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 3, 0, 0, 0, 2, 5, 0, 0, 0, 0, 2, 8, 1, 0, 0, 0, 0, 2, 9, 4, 0, 0, 0, 0, 0, 2, 12, 8, 0, 0, 0, 0, 0, 0, 2, 13, 15, 0, 0, 0, 0, 0, 0, 0, 2, 16, 23, 1, 0, 0, 0, 0, 0, 0, 0, 2, 17, 32, 5, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps right or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the maximum triangular partition contained inside the diagram.

Examples

			Triangle begins:
  1
  0  1
  0  2  0
  0  2  1  0
  0  2  3  0  0
  0  2  5  0  0  0
  0  2  8  1  0  0  0
  0  2  9  4  0  0  0  0
  0  2 12  8  0  0  0  0  0
  0  2 13 15  0  0  0  0  0  0
  0  2 16 23  1  0  0  0  0  0  0
  0  2 17 32  5  0  0  0  0  0  0  0
  0  2 20 43 12  0  0  0  0  0  0  0  0
  0  2 21 54 24  0  0  0  0  0  0  0  0  0
  0  2 24 67 42  0  0  0  0  0  0  0  0  0  0
  0  2 25 82 66  1  0  0  0  0  0  0  0  0  0  0
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otb[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(w=#p); for(i=1, #p, w=min(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A368986(n).

A325200 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is k.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 3, 0, 2, 0, 0, 3, 2, 0, 2, 0, 1, 0, 6, 2, 0, 2, 0, 0, 4, 3, 4, 2, 0, 2, 0, 0, 6, 2, 6, 4, 2, 0, 2, 0, 0, 4, 9, 5, 4, 4, 2, 0, 2, 0, 1, 0, 15, 6, 8, 4, 4, 2, 0, 2, 0, 0, 5, 12, 12, 9, 6, 4, 4, 2, 0, 2, 0, 0, 10, 6, 21, 10, 12, 6, 4, 4, 2, 0, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Examples

			Triangle begins:
  1
  1  0
  0  2  0
  1  0  2  0
  0  3  0  2  0
  0  3  2  0  2  0
  1  0  6  2  0  2  0
  0  4  3  4  2  0  2  0
  0  6  2  6  4  2  0  2  0
  0  4  9  5  4  4  2  0  2  0
  1  0 15  6  8  4  4  2  0  2  0
  0  5 12 12  9  6  4  4  2  0  2  0
  0 10  6 21 10 12  6  4  4  2  0  2  0
  0 10 12 20 18 13 10  6  4  4  2  0  2  0
  0  5 27 20 23 16 16 10  6  4  4  2  0  2  0
  1  0 38 22 32 22 19 14 10  6  4  4  2  0  2  0
  0  6 34 38 34 35 20 22 14 10  6  4  4  2  0  2  0
  0 15 22 57 44 40 34 23 20 14 10  6  4  4  2  0  2  0
  0 20 20 71 55 54 45 32 26 20 14 10  6  4  4  2  0  2  0
  0 15 43 70 71 66 60 44 35 24 20 14 10  6  4  4  2  0  2  0
  0  6 74 64 99 83 70 65 42 38 24 20 14 10  6  4  4  2  0  2  0
Row n = 9 counts the following partitions (empty columns not shown):
  (432)   (333)    (54)      (63)      (72)       (81)        (9)
  (3321)  (441)    (621)     (6111)    (711)      (21111111)  (111111111)
  (4221)  (522)    (22221)   (222111)  (2211111)
  (4311)  (531)    (51111)   (411111)  (3111111)
          (3222)   (321111)
          (5211)
          (32211)
          (33111)
          (42111)
		

Crossrefs

Row sums are A000041. Column k = 1 is A325191. Column k = 2 is A325199.
T(n,k) = A325189(n,k) - A325188(n,k).

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==k&]],{n,0,20},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(b=#p,c=0); for(i=1, #p, my(x=#p-i+p[i]); b=min(b,x); c=max(c,x)); r[c-b+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A366157(n) - A368986(n). - Andrew Howroyd, Jan 13 2024

A325187 Number of integer partitions of n such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square.

Original entry on oeis.org

1, 0, 1, 3, 3, 5, 9, 14, 20, 26, 38, 53, 75, 101, 132, 175, 229, 301, 394, 509, 650, 826, 1043, 1315, 1656, 2074, 2590, 3218, 3975, 4896, 6008, 7361, 8989, 10960, 13323, 16159, 19531, 23553, 28323, 34002, 40723, 48694, 58115, 69249, 82350, 97766, 115832
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary. The sequence gives the number of integer partitions of n whose Young diagram has last part of its origin-to-boundary partition equal to 1.
The Heinz numbers of these partitions are given by A325185.

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (21)  (22)   (41)    (51)     (61)      (71)
             (31)   (311)   (321)    (322)     (332)
             (211)  (2111)  (411)    (331)     (422)
                            (3111)   (421)     (431)
                            (21111)  (511)     (521)
                                     (3211)    (611)
                                     (4111)    (3221)
                                     (31111)   (3311)
                                     (211111)  (4211)
                                               (5111)
                                               (32111)
                                               (41111)
                                               (311111)
                                               (2111111)
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otb[#]>otb[Rest[#]]&&otb[#]>otb[DeleteCases[#-1,0]]&]],{n,30}]

A325195 Difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 3, 2, 1, 1, 4, 1, 5, 2, 1, 3, 6, 1, 7, 1, 2, 3, 8, 2, 2, 4, 2, 2, 9, 0, 10, 4, 3, 5, 2, 2, 11, 6, 4, 2, 12, 1, 13, 3, 1, 7, 14, 3, 3, 1, 5, 4, 15, 2, 3, 2, 6, 8, 16, 1, 17, 9, 1, 5, 4, 2, 18, 5, 7, 1, 19, 3, 20, 10, 1, 6, 3, 3, 21, 3, 3, 11
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition (3,3) has Heinz number 25 and diagram
  o o o
  o o o
containing maximal triangular partition
  o o
  o
and contained in minimal triangular partition
  o o o o
  o o o
  o o
  o
so a(25) = 4 - 2 = 2.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[otbmax[primeptn[n]]-otb[primeptn[n]],{n,100}]

A325196 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.

Original entry on oeis.org

3, 4, 9, 10, 12, 15, 18, 20, 42, 45, 50, 60, 63, 70, 75, 84, 90, 100, 105, 126, 140, 150, 294, 315, 330, 350, 420, 441, 462, 490, 495, 525, 550, 588, 630, 660, 693, 700, 735, 770, 825, 882, 924, 980, 990, 1050, 1100, 1155, 1386, 1470, 1540, 1650, 2730, 3234
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325191.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    4: {1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   42: {1,2,4}
   45: {2,2,3}
   50: {1,3,3}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
  100: {1,1,3,3}
  105: {2,3,4}
  126: {1,2,2,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==1&]

A325181 Number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.

Original entry on oeis.org

0, 0, 2, 1, 0, 2, 3, 2, 1, 0, 2, 3, 4, 3, 2, 1, 0, 2, 3, 4, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.

Examples

			The a(2) = 2 through a(15) = 1 partitions:
(2)  (21) (32)  (33)  (322) (332) (433)  (443)  (444)  (4333) (4433) (4443)
(11)      (221) (222) (331)       (3331) (3332) (3333) (4432) (4442)
                (321)                    (4331) (4332) (4441)
                                                (4431)
		

Crossrefs

Programs

  • Mathematica
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    codurf[ptn_]:=Max[Length[ptn],Max[ptn]];
    Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==1&]],{n,0,30}]

Extensions

More terms from Giovanni Resta, Apr 15 2019

A325199 Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 6, 3, 2, 9, 15, 12, 6, 12, 27, 38, 34, 22, 20, 43, 74, 94, 90, 67, 48, 69, 130, 194, 232, 230, 187, 132, 129, 218, 364, 497, 576, 578, 498, 367, 290, 378, 642, 977, 1264, 1435, 1448, 1290, 1000, 735, 728
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325197.

Examples

			The a(3) = 2 through a(10) = 15 partitions (empty columns not shown):
  (3)    (41)    (33)    (43)    (521)    (333)    (433)
  (111)  (2111)  (42)    (2221)  (32111)  (441)    (442)
                 (222)   (4111)           (522)    (532)
                 (411)                    (531)    (541)
                 (2211)                   (3222)   (3322)
                 (3111)                   (5211)   (3331)
                                          (32211)  (4222)
                                          (33111)  (4411)
                                          (42111)  (5221)
                                                   (5311)
                                                   (32221)
                                                   (33211)
                                                   (42211)
                                                   (43111)
                                                   (52111)
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==2&]],{n,0,30}]
Showing 1-8 of 8 results.