A325188 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with origin-to-boundary graph-distance equal to k.
1, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 3, 0, 0, 0, 2, 5, 0, 0, 0, 0, 2, 8, 1, 0, 0, 0, 0, 2, 9, 4, 0, 0, 0, 0, 0, 2, 12, 8, 0, 0, 0, 0, 0, 0, 2, 13, 15, 0, 0, 0, 0, 0, 0, 0, 2, 16, 23, 1, 0, 0, 0, 0, 0, 0, 0, 2, 17, 32, 5, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 0 0 2 1 0 0 2 3 0 0 0 2 5 0 0 0 0 2 8 1 0 0 0 0 2 9 4 0 0 0 0 0 2 12 8 0 0 0 0 0 0 2 13 15 0 0 0 0 0 0 0 2 16 23 1 0 0 0 0 0 0 0 2 17 32 5 0 0 0 0 0 0 0 0 2 20 43 12 0 0 0 0 0 0 0 0 0 2 21 54 24 0 0 0 0 0 0 0 0 0 0 2 24 67 42 0 0 0 0 0 0 0 0 0 0 0 2 25 82 66 1 0 0 0 0 0 0 0 0 0 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- N. Guru Sharan, Rook decomposition of the Partition function, arXiv:2507.20260 [math.CO], 2025. See p. 4.
- N. Guru Sharan and Armin Straub, Partitions with Durfee triangles of fixed size, arXiv:2507.19047 [math.CO], 2025. See p. 10.
- Eric Weisstein's World of Mathematics, Graph Distance.
Crossrefs
Programs
-
Mathematica
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Table[Length[Select[IntegerPartitions[n],otb[#]==k&]],{n,0,15},{k,0,n}]
-
PARI
row(n)={my(r=vector(n+1)); forpart(p=n, my(w=#p); for(i=1, #p, w=min(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024
Formula
Sum_{k=1..n} k*T(n,k) = A368986(n).
Comments