cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325189 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with maximum origin-to-boundary graph-distance equal to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 3, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 1, 6, 2, 2, 0, 0, 0, 0, 7, 4, 2, 2, 0, 0, 0, 0, 6, 8, 4, 2, 2, 0, 0, 0, 0, 4, 12, 6, 4, 2, 2, 0, 0, 0, 0, 1, 15, 12, 6, 4, 2, 2, 0, 0, 0, 0, 0, 17, 15, 10, 6, 4, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The maximum origin-to-boundary graph-distance of an integer partition is one plus the maximum number of unit steps East or South in the Young diagram that can be followed, starting from the upper-left square, to reach a boundary square in the lower-right quadrant. It is also the side-length of the minimum triangular partition containing the diagram.

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  1  2
  0  0  0  3  2
  0  0  0  3  2  2
  0  0  0  1  6  2  2
  0  0  0  0  7  4  2  2
  0  0  0  0  6  8  4  2  2
  0  0  0  0  4 12  6  4  2  2
  0  0  0  0  1 15 12  6  4  2  2
  0  0  0  0  0 17 15 10  6  4  2  2
  0  0  0  0  0 14 23 16 10  6  4  2  2
  0  0  0  0  0 10 30 23 14 10  6  4  2  2
  0  0  0  0  0  5 39 29 24 14 10  6  4  2  2
  0  0  0  0  0  1 42 42 31 22 14 10  6  4  2  2
Row 9 counts the following partitions:
  (432)   (54)     (63)      (72)       (81)        (9)
  (3321)  (333)    (621)     (711)      (21111111)  (111111111)
  (4221)  (441)    (6111)    (2211111)
  (4311)  (522)    (222111)  (3111111)
          (531)    (321111)
          (3222)   (411111)
          (5211)
          (22221)
          (32211)
          (33111)
          (42111)
          (51111)
		

Crossrefs

Programs

  • Mathematica
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(w=0); for(i=1, #p, w=max(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A366157(n). - Andrew Howroyd, Jan 12 2024