A325189 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with maximum origin-to-boundary graph-distance equal to k.
1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 3, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 1, 6, 2, 2, 0, 0, 0, 0, 7, 4, 2, 2, 0, 0, 0, 0, 6, 8, 4, 2, 2, 0, 0, 0, 0, 4, 12, 6, 4, 2, 2, 0, 0, 0, 0, 1, 15, 12, 6, 4, 2, 2, 0, 0, 0, 0, 0, 17, 15, 10, 6, 4, 2, 2
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 2 0 0 1 2 0 0 0 3 2 0 0 0 3 2 2 0 0 0 1 6 2 2 0 0 0 0 7 4 2 2 0 0 0 0 6 8 4 2 2 0 0 0 0 4 12 6 4 2 2 0 0 0 0 1 15 12 6 4 2 2 0 0 0 0 0 17 15 10 6 4 2 2 0 0 0 0 0 14 23 16 10 6 4 2 2 0 0 0 0 0 10 30 23 14 10 6 4 2 2 0 0 0 0 0 5 39 29 24 14 10 6 4 2 2 0 0 0 0 0 1 42 42 31 22 14 10 6 4 2 2 Row 9 counts the following partitions: (432) (54) (63) (72) (81) (9) (3321) (333) (621) (711) (21111111) (111111111) (4221) (441) (6111) (2211111) (4311) (522) (222111) (3111111) (531) (321111) (3222) (411111) (5211) (22221) (32211) (33111) (42111) (51111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Bridget Eileen Tenner, Reduced word manipulation: patterns and enumeration, J. Algebr. Comb. 46, No. 1, 189-217 (2017), table 1.
- Tewodros Amdeberhan, George E. Andrews, and Cristina Ballantine, Hook length and symplectic content in partitions, arXiv:2205.07322 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Graph Distance
Crossrefs
Programs
-
Mathematica
otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Table[Length[Select[IntegerPartitions[n],otbmax[#]==k&]],{n,0,15},{k,0,n}]
-
PARI
row(n)={my(r=vector(n+1)); forpart(p=n, my(w=0); for(i=1, #p, w=max(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024
Formula
Sum_{k=1..n} k*T(n,k) = A366157(n). - Andrew Howroyd, Jan 12 2024
Comments