A325198 Positive numbers whose maximum prime index minus minimum prime index is 2.
10, 20, 21, 30, 40, 50, 55, 60, 63, 80, 90, 91, 100, 105, 120, 147, 150, 160, 180, 187, 189, 200, 240, 247, 250, 270, 275, 300, 315, 320, 360, 385, 391, 400, 441, 450, 480, 500, 525, 540, 551, 567, 600, 605, 637, 640, 713, 720, 735, 750, 800, 810, 900, 945
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 10: {1,3} 20: {1,1,3} 21: {2,4} 30: {1,2,3} 40: {1,1,1,3} 50: {1,3,3} 55: {3,5} 60: {1,1,2,3} 63: {2,2,4} 80: {1,1,1,1,3} 90: {1,2,2,3} 91: {4,6} 100: {1,1,3,3} 105: {2,3,4} 120: {1,1,1,2,3} 147: {2,4,4} 150: {1,2,3,3} 160: {1,1,1,1,1,3} 180: {1,1,2,2,3} 187: {5,7}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # for terms <= N q:= 2: r:= 3: Res:= NULL: do p:= q; q:= r; r:= nextprime(r); if p*r > N then break fi; for i from 1 do pi:= p^i; if pi*r > N then break fi; for j from 0 do piqj:= pi*q^j; if piqj*r > N then break fi; Res:= Res, seq(piqj*r^k,k=1 .. floor(log[r](N/piqj))) od od od: sort([Res]); # Robert Israel, Apr 12 2019
-
Mathematica
Select[Range[100],PrimePi[FactorInteger[#][[-1,1]]]-PrimePi[FactorInteger[#][[1,1]]]==2&]
Comments