cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325197 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2.

Original entry on oeis.org

5, 8, 14, 21, 24, 25, 27, 28, 35, 36, 40, 54, 56, 66, 98, 99, 110, 120, 125, 132, 135, 147, 154, 165, 168, 175, 180, 189, 196, 198, 200, 220, 225, 231, 245, 250, 252, 264, 270, 275, 280, 297, 300, 308, 375, 378, 385, 390, 392, 396, 440, 450, 500, 546, 585, 594
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325199.

Examples

			The sequence of terms together with their prime indices begins:
    5: {3}
    8: {1,1,1}
   14: {1,4}
   21: {2,4}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   35: {3,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   66: {1,2,5}
   98: {1,4,4}
   99: {2,2,5}
  110: {1,3,5}
  120: {1,1,1,2,3}
  125: {3,3,3}
  132: {1,1,2,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==2&]

A325179 Heinz numbers of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.

Original entry on oeis.org

3, 4, 6, 15, 18, 25, 27, 30, 45, 50, 75, 175, 245, 250, 343, 350, 375, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 3773, 4802, 5929, 7203, 7546, 9317, 11319, 11858, 12005, 14641, 16807, 17787, 18634, 18865, 26411, 27951, 29282, 29645, 41503, 43923, 46585
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325181.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    4: {1,1}
    6: {1,2}
   15: {2,3}
   18: {1,2,2}
   25: {3,3}
   27: {2,2,2}
   30: {1,2,3}
   45: {2,2,3}
   50: {1,3,3}
   75: {2,3,3}
  175: {3,3,4}
  245: {3,4,4}
  250: {1,3,3,3}
  343: {4,4,4}
  350: {1,3,3,4}
  375: {2,3,3,3}
  490: {1,3,4,4}
  525: {2,3,3,4}
  625: {3,3,3,3}
		

Crossrefs

Numbers k such that A263297(k) - A257990(k) = 1.
Positions of 1's in A325178.

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];
    Select[Range[1000],codurf[#]-durf[#]==1&]

A325181 Number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 1.

Original entry on oeis.org

0, 0, 2, 1, 0, 2, 3, 2, 1, 0, 2, 3, 4, 3, 2, 1, 0, 2, 3, 4, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 2, 3, 4, 5, 6
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.

Examples

			The a(2) = 2 through a(15) = 1 partitions:
(2)  (21) (32)  (33)  (322) (332) (433)  (443)  (444)  (4333) (4433) (4443)
(11)      (221) (222) (331)       (3331) (3332) (3333) (4432) (4442)
                (321)                    (4331) (4332) (4441)
                                                (4431)
		

Crossrefs

Programs

  • Mathematica
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    codurf[ptn_]:=Max[Length[ptn],Max[ptn]];
    Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==1&]],{n,0,30}]

Extensions

More terms from Giovanni Resta, Apr 15 2019

A325199 Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 6, 3, 2, 9, 15, 12, 6, 12, 27, 38, 34, 22, 20, 43, 74, 94, 90, 67, 48, 69, 130, 194, 232, 230, 187, 132, 129, 218, 364, 497, 576, 578, 498, 367, 290, 378, 642, 977, 1264, 1435, 1448, 1290, 1000, 735, 728
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325197.

Examples

			The a(3) = 2 through a(10) = 15 partitions (empty columns not shown):
  (3)    (41)    (33)    (43)    (521)    (333)    (433)
  (111)  (2111)  (42)    (2221)  (32111)  (441)    (442)
                 (222)   (4111)           (522)    (532)
                 (411)                    (531)    (541)
                 (2211)                   (3222)   (3322)
                 (3111)                   (5211)   (3331)
                                          (32211)  (4222)
                                          (33111)  (4411)
                                          (42111)  (5221)
                                                   (5311)
                                                   (32221)
                                                   (33211)
                                                   (42211)
                                                   (43111)
                                                   (52111)
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==2&]],{n,0,30}]
Showing 1-4 of 4 results.