cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325221 E.g.f.: C(x,k) = cn( i * Integral C(x,k) dx, k), where C(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, as a triangle of coefficients T(n,j) read by rows.

Original entry on oeis.org

1, 1, 0, 5, 4, 0, 61, 148, 16, 0, 1385, 6744, 2832, 64, 0, 50521, 410456, 383856, 47936, 256, 0, 2702765, 32947964, 54480944, 17142784, 780544, 1024, 0, 199360981, 3402510924, 8760740640, 5199585280, 686711040, 12555264, 4096, 0, 19391512145, 441239943664, 1632067372896, 1569971730560, 419867864320, 26090711040, 201199616, 16384, 0, 2404879675441, 70347660061552, 353538702361888, 502094919789184, 227204970315520, 30892394850304, 965223559168, 3220652032, 65536, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 13 2019

Keywords

Comments

Equals a row reversal of triangle A322232.
Compare to cn(x,k) = 1 - Integral sn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060627).

Examples

			E.g.f.: C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
such that C(x,k) = cn( i * Integral C(x,k) dx, k).
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. C(x,k) begins:
1;
1, 0;
5, 4, 0;
61, 148, 16, 0;
1385, 6744, 2832, 64, 0;
50521, 410456, 383856, 47936, 256, 0;
2702765, 32947964, 54480944, 17142784, 780544, 1024, 0;
199360981, 3402510924, 8760740640, 5199585280, 686711040, 12555264, 4096, 0;
19391512145, 441239943664, 1632067372896, 1569971730560, 419867864320, 26090711040, 201199616, 16384, 0;
2404879675441, 70347660061552, 353538702361888, 502094919789184, 227204970315520, 30892394850304, 965223559168, 3220652032, 65536, 0; ...
RELATED SERIES.
The related series S(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
		

Crossrefs

Cf. A325220 (S), A325222(D).
Cf. A322232 (row reversal).

Programs

  • PARI
    N=10;
    {S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
    {T(n,j) = (2*n)!*polcoeff(polcoeff(C, 2*n, x), 2*j, k)}
    for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))

Formula

E.g.f. C = C(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, along with related series S = S(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C^2*D dx.
(1b) C = 1 + Integral S*C*D dx.
(1c) D = 1 + k^2 * Integral S*C^2 dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral C*D dx ).
(3b) D + k*S = exp( k * Integral C^2 dx ).
(4a) S = sinh( Integral C*D dx ).
(4b) S = sinh( k * Integral C^2 dx ) / k.
(4c) C = cosh( Integral C*D dx ).
(4d) D = cosh( k * Integral C^2 dx ).
(5a) d/dx S = C^2*D.
(5b) d/dx C = S*C*D.
(5c) d/dx D = k^2 * S*C^2.
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral C dx, k),
(6b) C = cn( i * Integral C dx, k),
(6c) D = dn( i * Integral C dx, k).
(7a) S = sc( Integral C dx, k') = sn(Integral C dx, k')/cn(Integral C dx, k'),
(7b) C = nc( Integral C dx, k') = 1/cn(Integral C dx, k'),
(7c) D = dc( Integral C dx, k') = dn(Integral C dx, k')/cn(Integral C dx, k').
Row sums equal ( (2*n)!/(n!*2^n) )^2 = A001818(n), the squares of the odd double factorials.
Column T(n,0) = A000364(n), for n>=0, where A000364 is the secant numbers.