cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325284 Numbers whose prime indices form an initial interval with a single hole: (1, 2, ..., x, x + 2, ..., m - 1, m), where x can be 0 but must be less than m - 1.

Original entry on oeis.org

3, 9, 10, 15, 20, 27, 40, 42, 45, 50, 70, 75, 80, 81, 84, 100, 105, 126, 135, 140, 160, 168, 200, 225, 243, 250, 252, 280, 294, 315, 320, 330, 336, 350, 375, 378, 400, 405, 462, 490, 500, 504, 525, 560, 588, 640, 660, 672, 675, 700, 729, 735, 756, 770, 800
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose distinct parts form an initial interval with a single hole. The enumeration of these partitions by sum is given by A090858.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    9: {2,2}
   10: {1,3}
   15: {2,3}
   20: {1,1,3}
   27: {2,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   45: {2,2,3}
   50: {1,3,3}
   70: {1,3,4}
   75: {2,3,3}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   84: {1,1,2,4}
  100: {1,1,3,3}
  105: {2,3,4}
  126: {1,2,2,4}
  135: {2,2,2,3}
  140: {1,1,3,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Length[Complement[Range[PrimePi[FactorInteger[#][[-1,1]]]],PrimePi/@First/@FactorInteger[#]]]==1&]