A325334 Number of integer partitions of n with adjusted frequency depth 3 whose parts cover an initial interval of positive integers.
0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 1, 1, 0, 4, 0, 0, 1, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 3, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 4, 0, 0, 2, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 2, 0, 0, 3, 0, 1, 1, 0, 0, 4, 0, 0, 1, 0, 0, 5, 1, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 4
Offset: 0
Keywords
Examples
The first 30 terms count the following partitions: 3: (21) 6: (321) 6: (2211) 9: (222111) 10: (4321) 12: (332211) 12: (22221111) 15: (54321) 15: (2222211111) 18: (333222111) 18: (222222111111) 20: (44332211) 21: (654321) 21: (22222221111111) 24: (333322221111) 24: (2222222211111111) 27: (222222222111111111) 28: (7654321) 30: (5544332211) 30: (444333222111) 30: (333332222211111) 30: (22222222221111111111)
Links
- Antti Karttunen, Table of n, a(n) for n = 0..100000
Crossrefs
Programs
-
Mathematica
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; unifQ[m_]:=SameQ@@Length/@Split[m]; Table[Length[Select[IntegerPartitions[n],normQ[#]&&!SameQ@@#&&unifQ[#]&]],{n,0,30}]
-
PARI
A007862(n) = sumdiv(n, d, ispolygonal(d, 3)); A325334(n) = if(!n,n,A007862(n)-1); \\ Antti Karttunen, Jan 17 2025
Formula
a(n) = A007862(n) - 1.
Extensions
Data section extended to a(105) by Antti Karttunen, Jan 17 2025
Comments