A325336 Triangle read by rows where T(n,k) is the number of integer partitions of n with adjusted frequency depth k whose parts cover an initial interval of positive integers.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 0, 1, 0, 3, 2, 0, 0, 0, 0, 0, 1, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1, 5, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 6, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 2 0 0 0 1 2 1 0 0 0 0 1 0 3 1 0 0 0 0 1 0 3 2 0 0 0 0 0 1 1 3 3 0 0 0 0 0 0 1 1 5 3 0 0 0 0 0 0 0 1 0 8 3 0 0 0 0 0 0 0 0 1 2 6 6 0 0 0 0 0 0 0 0 0 1 0 13 4 0 0 0 0 0 0 0 0 0 0 1 0 12 8 1 0 0 0 0 0 0 0 0 0 0 1 2 14 7 3 0 0 0 0 0 0 0 0 0 0 0 1 0 17 11 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 22 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 17 16 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 28 10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 29 13 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Row 15 counts the following partitions: 111111111111111 54321 433221 333321 4322211 2222211111 443211 3332211 4332111 3322221 33222111 43221111 22222221 322221111 32222211 332211111 33321111 432111111 222222111 321111111111 3222111111 3321111111 22221111111 32211111111 222111111111 2211111111111 21111111111111
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
Mathematica
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]]; Table[Length[Select[IntegerPartitions[n],normQ[#]&&fdadj[#]==k&]],{n,0,30},{k,0,n}]
-
PARI
depth(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L; r++); r)} isok(p)={if(#p, for(i=1, #p, if(p[i]-1 > if(i>1, p[i-1], 0), return(0)))); 1} row(n)={my(v=vector(1+n)); forpart(p=n, if(isok(p), v[1+depth(Vec(p))]++)); v} { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023
Comments