cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325334 Number of integer partitions of n with adjusted frequency depth 3 whose parts cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 1, 1, 0, 4, 0, 0, 1, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 3, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 4, 0, 0, 2, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 2, 0, 0, 3, 0, 1, 1, 0, 0, 4, 0, 0, 1, 0, 0, 5, 1, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 4
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz numbers of these partitions are given by A325374.

Examples

			The first 30 terms count the following partitions:
   3: (21)
   6: (321)
   6: (2211)
   9: (222111)
  10: (4321)
  12: (332211)
  12: (22221111)
  15: (54321)
  15: (2222211111)
  18: (333222111)
  18: (222222111111)
  20: (44332211)
  21: (654321)
  21: (22222221111111)
  24: (333322221111)
  24: (2222222211111111)
  27: (222222222111111111)
  28: (7654321)
  30: (5544332211)
  30: (444333222111)
  30: (333332222211111)
  30: (22222222221111111111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    unifQ[m_]:=SameQ@@Length/@Split[m];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!SameQ@@#&&unifQ[#]&]],{n,0,30}]
  • PARI
    A007862(n) = sumdiv(n, d, ispolygonal(d, 3));
    A325334(n) = if(!n,n,A007862(n)-1); \\ Antti Karttunen, Jan 17 2025

Formula

a(n) = A007862(n) - 1.

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 17 2025

A325374 Numbers with adjusted frequency depth 3 whose prime indices cover an initial interval of positive integers.

Original entry on oeis.org

6, 30, 36, 210, 216, 900, 1296, 2310, 7776, 27000, 30030, 44100, 46656, 279936, 510510, 810000, 1679616, 5336100, 9261000, 9699690, 10077696, 24300000, 60466176, 223092870, 362797056, 729000000, 901800900, 1944810000, 2176782336, 6469693230, 12326391000
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The adjusted frequency depth (A323014) of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with adjusted frequency depth 3 whose parts cover an initial interval of positive integers. The enumeration of these partitions by sum is given by A325334.
The terms are the primorial numbers (A002110) above 2 and all their powers. - Amiram Eldar, May 08 2019

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}
     30: {1,2,3}
     36: {1,1,2,2}
    210: {1,2,3,4}
    216: {1,1,1,2,2,2}
    900: {1,1,2,2,3,3}
   1296: {1,1,1,1,2,2,2,2}
   2310: {1,2,3,4,5}
   7776: {1,1,1,1,1,2,2,2,2,2}
  27000: {1,1,1,2,2,2,3,3,3}
  30030: {1,2,3,4,5,6}
  44100: {1,1,2,2,3,3,4,4}
  46656: {1,1,1,1,1,1,2,2,2,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#1]&,n,!PrimeQ[#1]&]]];
    Select[Range[10000],normQ[#]&&fdadj[#]==3&]

A325335 Number of integer partitions of n with adjusted frequency depth 4 whose parts cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 3, 3, 3, 5, 8, 6, 13, 12, 14, 17, 22, 17, 28, 29, 30, 38, 50, 46, 67, 64, 75, 81, 104, 99, 127, 128, 150, 155, 201, 189, 236, 244, 293, 302, 363, 372, 437, 457, 548, 547, 638, 671, 754, 809, 922, 947, 1074, 1144, 1290, 1342, 1515, 1574
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz numbers of these partitions are given by A325387.

Examples

			The a(4) = 1 through a(10) = 5 partitions:
  (211)  (221)   (21111)  (2221)    (22211)    (22221)     (222211)
         (2111)           (22111)   (221111)   (2211111)   (322111)
                          (211111)  (2111111)  (21111111)  (2221111)
                                                           (22111111)
                                                           (211111111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&fdadj[#]==4&]],{n,0,30}]

A325387 Numbers with adjusted frequency depth 4 whose prime indices cover an initial interval of positive integers.

Original entry on oeis.org

12, 18, 24, 48, 54, 72, 96, 108, 144, 162, 192, 288, 324, 360, 384, 432, 486, 540, 576, 600, 648, 720, 768, 864, 972, 1152, 1200, 1260, 1350, 1440, 1458, 1500, 1536, 1620, 1728, 1944, 2100, 2160, 2250, 2304, 2400, 2592, 2880, 2916, 2940, 3072, 3150, 3240, 3456
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with adjusted frequency depth 4 whose parts cover an initial interval of positive integers. The enumeration of these partitions by sum is given by A325335.

Examples

			The sequence of terms together with their prime indices begins:
    12: {1,1,2}
    18: {1,2,2}
    24: {1,1,1,2}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    72: {1,1,1,2,2}
    96: {1,1,1,1,1,2}
   108: {1,1,2,2,2}
   144: {1,1,1,1,2,2}
   162: {1,2,2,2,2}
   192: {1,1,1,1,1,1,2}
   288: {1,1,1,1,1,2,2}
   324: {1,1,2,2,2,2}
   360: {1,1,1,2,2,3}
   384: {1,1,1,1,1,1,1,2}
   432: {1,1,1,1,2,2,2}
   486: {1,2,2,2,2,2}
   540: {1,1,2,2,2,3}
   576: {1,1,1,1,1,1,2,2}
   600: {1,1,1,2,3,3}
		

Crossrefs

Programs

  • Mathematica
    normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#1]&,n,!PrimeQ[#1]&]]];
    Select[Range[10000],normQ[#]&&fdadj[#]==4&]
Showing 1-4 of 4 results.