cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A325334 Number of integer partitions of n with adjusted frequency depth 3 whose parts cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 1, 1, 0, 4, 0, 0, 1, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 3, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 4, 0, 0, 2, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 2, 0, 0, 3, 0, 1, 1, 0, 0, 4, 0, 0, 1, 0, 0, 5, 1, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 4
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz numbers of these partitions are given by A325374.

Examples

			The first 30 terms count the following partitions:
   3: (21)
   6: (321)
   6: (2211)
   9: (222111)
  10: (4321)
  12: (332211)
  12: (22221111)
  15: (54321)
  15: (2222211111)
  18: (333222111)
  18: (222222111111)
  20: (44332211)
  21: (654321)
  21: (22222221111111)
  24: (333322221111)
  24: (2222222211111111)
  27: (222222222111111111)
  28: (7654321)
  30: (5544332211)
  30: (444333222111)
  30: (333332222211111)
  30: (22222222221111111111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    unifQ[m_]:=SameQ@@Length/@Split[m];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!SameQ@@#&&unifQ[#]&]],{n,0,30}]
  • PARI
    A007862(n) = sumdiv(n, d, ispolygonal(d, 3));
    A325334(n) = if(!n,n,A007862(n)-1); \\ Antti Karttunen, Jan 17 2025

Formula

a(n) = A007862(n) - 1.

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 17 2025

A325336 Triangle read by rows where T(n,k) is the number of integer partitions of n with adjusted frequency depth k whose parts cover an initial interval of positive integers.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 0, 1, 0, 3, 2, 0, 0, 0, 0, 0, 1, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 1, 5, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 6, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).

Examples

			Triangle begins:
  1
  0  1
  0  0  1
  0  0  1  1
  0  0  1  0  1
  0  0  1  0  2  0
  0  0  1  2  1  0  0
  0  0  1  0  3  1  0  0
  0  0  1  0  3  2  0  0  0
  0  0  1  1  3  3  0  0  0  0
  0  0  1  1  5  3  0  0  0  0  0
  0  0  1  0  8  3  0  0  0  0  0  0
  0  0  1  2  6  6  0  0  0  0  0  0  0
  0  0  1  0 13  4  0  0  0  0  0  0  0  0
  0  0  1  0 12  8  1  0  0  0  0  0  0  0  0
  0  0  1  2 14  7  3  0  0  0  0  0  0  0  0  0
  0  0  1  0 17 11  3  0  0  0  0  0  0  0  0  0  0
  0  0  1  0 22  7  8  0  0  0  0  0  0  0  0  0  0  0
  0  0  1  2 17 16 10  0  0  0  0  0  0  0  0  0  0  0  0
  0  0  1  0 28 10 15  0  0  0  0  0  0  0  0  0  0  0  0  0
  0  0  1  1 29 13 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Row 15 counts the following partitions:
  111111111111111  54321       433221          333321        4322211
                   2222211111  443211          3332211       4332111
                               3322221         33222111      43221111
                               22222221        322221111
                               32222211        332211111
                               33321111        432111111
                               222222111       321111111111
                               3222111111
                               3321111111
                               22221111111
                               32211111111
                               222111111111
                               2211111111111
                               21111111111111
		

Crossrefs

Row sums are A000009.
Column k = 3 is A325334.
Column k = 4 is A325335.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&fdadj[#]==k&]],{n,0,30},{k,0,n}]
  • PARI
    depth(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L; r++); r)}
    isok(p)={if(#p, for(i=1, #p, if(p[i]-1 > if(i>1, p[i-1], 0), return(0)))); 1}
    row(n)={my(v=vector(1+n)); forpart(p=n, if(isok(p), v[1+depth(Vec(p))]++)); v}
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023

A325387 Numbers with adjusted frequency depth 4 whose prime indices cover an initial interval of positive integers.

Original entry on oeis.org

12, 18, 24, 48, 54, 72, 96, 108, 144, 162, 192, 288, 324, 360, 384, 432, 486, 540, 576, 600, 648, 720, 768, 864, 972, 1152, 1200, 1260, 1350, 1440, 1458, 1500, 1536, 1620, 1728, 1944, 2100, 2160, 2250, 2304, 2400, 2592, 2880, 2916, 2940, 3072, 3150, 3240, 3456
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with adjusted frequency depth 4 whose parts cover an initial interval of positive integers. The enumeration of these partitions by sum is given by A325335.

Examples

			The sequence of terms together with their prime indices begins:
    12: {1,1,2}
    18: {1,2,2}
    24: {1,1,1,2}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    72: {1,1,1,2,2}
    96: {1,1,1,1,1,2}
   108: {1,1,2,2,2}
   144: {1,1,1,1,2,2}
   162: {1,2,2,2,2}
   192: {1,1,1,1,1,1,2}
   288: {1,1,1,1,1,2,2}
   324: {1,1,2,2,2,2}
   360: {1,1,1,2,2,3}
   384: {1,1,1,1,1,1,1,2}
   432: {1,1,1,1,2,2,2}
   486: {1,2,2,2,2,2}
   540: {1,1,2,2,2,3}
   576: {1,1,1,1,1,1,2,2}
   600: {1,1,1,2,3,3}
		

Crossrefs

Programs

  • Mathematica
    normQ[n_Integer]:=Or[n==1,PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]];
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#1]&,n,!PrimeQ[#1]&]]];
    Select[Range[10000],normQ[#]&&fdadj[#]==4&]
Showing 1-3 of 3 results.