A325350 Number of integer partitions of n whose augmented differences are weakly decreasing.
1, 1, 2, 3, 4, 6, 8, 10, 13, 17, 21, 26, 32, 38, 46, 56, 66, 78, 92, 106, 124, 145, 166, 191, 220, 249, 284, 325, 366, 413, 468, 523, 586, 659, 733, 817, 913, 1011, 1121, 1245, 1373, 1515, 1674, 1838, 2020, 2223, 2433, 2664, 2920, 3184, 3476, 3797, 4129, 4492
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (31) (32) (42) (52) (53) (111) (211) (41) (51) (61) (62) (1111) (311) (321) (421) (71) (2111) (411) (511) (521) (11111) (3111) (3211) (611) (21111) (4111) (4211) (111111) (31111) (5111) (211111) (32111) (1111111) (41111) (311111) (2111111) (11111111) For example, (4,2,1,1) has augmented differences (3,2,1,1), which are weakly decreasing, so (4,2,1,1) is counted under a(8).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
aug[y_]:=Table[If[i
Formula
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(j*(j+1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 25 2019
Comments