cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A325351 Heinz number of the augmented differences of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 6, 10, 11, 12, 13, 14, 9, 16, 17, 12, 19, 20, 15, 22, 23, 24, 10, 26, 12, 28, 29, 18, 31, 32, 21, 34, 15, 24, 37, 38, 33, 40, 41, 30, 43, 44, 18, 46, 47, 48, 14, 20, 39, 52, 53, 24, 25, 56, 51, 58, 59, 36, 61, 62, 30, 64, 35, 42, 67, 68, 57, 30, 71, 48, 73, 74, 18, 76, 21, 66, 79, 80, 24, 82, 83, 60, 55, 86, 69, 88, 89, 36, 35
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Note that aug preserves length so this sequence preserves omega (number of prime factors counted with multiplicity).

Examples

			The partition (3,2,2,1) with Heinz number 90 has augmented differences (2,1,2,1) with Heinz number 36, so a(90) = 36.
		

Crossrefs

Number of appearances of n is A008480(n).

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
  • PARI
    augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
    A325351(n) = factorback(apply(prime,augdiffs(n))); \\ Antti Karttunen, Nov 16 2019

Extensions

More terms from Antti Karttunen, Nov 16 2019

A320466 Number of partitions of n such that the successive differences of consecutive parts are nonincreasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 7, 9, 12, 12, 13, 18, 17, 21, 25, 24, 27, 34, 33, 38, 44, 43, 47, 58, 56, 62, 70, 70, 78, 90, 84, 96, 109, 108, 118, 132, 127, 140, 158, 158, 167, 189, 185, 204, 221, 218, 236, 260, 261, 282, 301, 299, 322, 358, 350, 376, 405, 404, 432, 472, 466, 500
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) >= p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are weakly decreasing. The Heinz numbers of these partitions are given by A325361. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are weakly decreasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(10) = 12 such partitions of 10:
01: [10]
02: [1, 9]
03: [2, 8]
04: [3, 7]
05: [4, 6]
06: [5, 5]
07: [1, 4, 5]
08: [2, 4, 4]
09: [1, 2, 3, 4]
10: [1, 3, 3, 3]
11: [2, 2, 2, 2, 2]
12: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
There are a(11) = 13 such partitions of 11:
01: [11]
02: [1, 10]
03: [2, 9]
04: [3, 8]
05: [4, 7]
06: [5, 6]
07: [1, 4, 6]
08: [1, 5, 5]
09: [2, 4, 5]
10: [3, 4, 4]
11: [2, 3, 3, 3]
12: [1, 2, 2, 2, 2, 2]
13: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
		

Crossrefs

Cf. A320382 (distinct parts, nonincreasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320466(n)
      (0..n).map{|i| f(i)}
    end
    p A320466(50)

A129654 Number of different ways to represent n as general polygonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)) = n>1, for m,r>1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 3, 3, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 5, 2, 2, 3, 3, 2, 3, 2, 2, 5, 3, 2, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 3, 2, 3, 2, 2, 3, 4, 3, 5, 2, 2, 3, 4, 2, 3, 2, 2, 4, 3, 2, 4, 2, 2, 5, 3, 2, 3, 3, 2, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 5, 3
Offset: 2

Views

Author

Alexander Adamchuk, Apr 27 2007

Keywords

Comments

The indices k of the first appearance of number n in a(k) are listed in A063778(n) = {2,3,6,15,36,225,...} = Least number k>1 such that k could be represented in n different ways as general m-gonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)).
From Gus Wiseman, May 03 2019: (Start)
Also the number of integer partitions of n whose augmented differences are all equal, where the augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k; for example aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Equivalently, a(n) is the number of integer partitions of n whose differences are all equal to the last part minus one. The Heinz numbers of these partitions are given by A307824. For example, the a(35) = 5 partitions are:
(35)
(23,12)
(11,9,7,5,3)
(8,7,6,5,4,3,2)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
(End)

Examples

			a(6) = 3 because 6 = P(2,6) = P(3,3) = P(6,2).
		

Crossrefs

Programs

  • Maple
    A129654 := proc(n) local resul, dvs, i, r, m ;
       dvs := numtheory[divisors](2*n) ;
       resul := 0 ;
       for i from 1 to nops(dvs) do
          r := op(i, dvs) ;
          if r > 1 then
             m := (2*n/r-4+2*r)/(r-1) ;
             if is(m, integer) then
                resul := resul+1 ;
             fi ;
          fi ;
       od ;
       RETURN(resul) ;
    end: # R. J. Mathar, May 14 2007
  • Mathematica
    a[n_] := (dvs = Divisors[2*n]; resul = 0; For[i = 1, i <= Length[dvs], i++, r = dvs[[i]]; If[r > 1, m = (2*n/r-4+2*r)/(r-1); If[IntegerQ[m], resul = resul+1 ] ] ]; resul); Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Sep 13 2012, translated from R. J. Mathar's Maple program *)
    Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]], {n, 2, 106}] (* Jonathan Sondow, May 09 2014 *)
    atpms[n_]:=Select[Join@@Table[i*Range[k,1,-1],{k,n},{i,0,n}],Total[#+1]==n&];
    Table[Length[atpms[n]],{n,100}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    a(n) = sumdiv(2*n, d, (d>1) && (2*n/d + 2*d - 4) % (d-1) == 0); \\ Daniel Suteu, Dec 22 2018

Formula

a(n) = A177025(n) + 1.
G.f.: x * Sum_{k>=1} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020

A320509 Number of partitions of n such that the successive differences of consecutive parts are nonincreasing, and first difference <= first part.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 6, 4, 6, 8, 7, 8, 11, 7, 12, 14, 10, 13, 19, 12, 18, 21, 16, 19, 27, 19, 25, 30, 25, 30, 37, 25, 35, 40, 35, 42, 49, 35, 49, 56, 46, 54, 66, 50, 65, 72, 60, 70, 83, 68, 84, 90, 80, 94, 110, 86, 107, 116, 98, 119, 137, 111, 134, 146, 130, 148, 165, 141, 169
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check visually if written in ascending order.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences (with the first part taken to be 0) of (6,3,1) are (-3,-2,-1). Then a(n) is the number of integer partitions of n whose differences (with the last part taken to be 0) are weakly decreasing. The Heinz numbers of these partitions are given by A325364. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences (with the first part taken to be 0) are weakly decreasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(11) = 8 such partitions of 11:
01: [11]
02: [4, 7]
03: [5, 6]
04: [2, 4, 5]
05: [3, 4, 4]
06: [2, 3, 3, 3]
07: [1, 2, 2, 2, 2, 2]
08: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
There are a(12) = 11 such partitions of 12:
01: [12]
02: [4, 8]
03: [5, 7]
04: [6, 6]
05: [2, 4, 6]
06: [3, 4, 5]
07: [4, 4, 4]
08: [3, 3, 3, 3]
09: [1, 2, 3, 3, 3]
10: [2, 2, 2, 2, 2, 2]
11: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
		

Crossrefs

Cf. A320387 (distinct parts, nonincreasing, and first difference <= first part).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320509(n)
      (0..n).map{|i| f(i)}
    end
    p A320509(50)

A325356 Number of integer partitions of n whose augmented differences are weakly increasing.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 6, 5, 5, 6, 8, 6, 10, 9, 8, 10, 13, 10, 15, 14, 13, 15, 21, 15, 19, 21, 20, 25, 25, 20, 31, 30, 30, 32, 35, 28, 40, 44, 36, 42, 50, 43, 54, 53, 49, 57, 67, 58, 68, 66, 66, 78, 84, 71, 86, 92, 82, 99, 109
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325394.

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (11111)  (222)     (1111111)  (53)
                                     (111111)             (332)
                                                          (2222)
                                                          (11111111)
For example, the augmented differences of (6,6,5,3) are (1,2,3,3), which are weakly increasing, so (6,6,5,3) is counted under a(20).
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A325389 Heinz numbers of integer partitions whose augmented differences are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325350.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325358 Number of integer partitions of n whose augmented differences are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 7, 9, 10, 11, 13, 14, 15, 18, 20, 21, 24, 26, 28, 33, 36, 38, 43, 46, 49, 56, 60, 63, 71, 76, 80, 90, 96, 100, 112, 120, 125, 139, 149, 155, 171, 183, 190, 208, 223, 232, 252, 269, 280, 304, 325, 338, 364, 387, 403
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325396.

Examples

			The a(1) = 1 through a(11) = 6 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (10)   (11)
            (21)  (31)  (41)  (42)  (52)   (62)   (63)   (73)   (83)
                              (51)  (61)   (71)   (72)   (82)   (92)
                                    (421)  (521)  (81)   (91)   (101)
                                                  (621)  (631)  (731)
                                                         (721)  (821)
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A325353 Number of integer partitions of n whose k-th differences are weakly decreasing for all k >= 0.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 7, 9, 11, 12, 13, 17, 16, 19, 23, 23, 24, 30, 29, 35, 37, 37, 40, 49, 47, 51, 56, 59, 61, 73, 65, 75, 80, 84, 91, 99, 91, 103, 112, 120, 114, 132, 126, 143, 154, 147, 152, 175, 169, 190, 187, 194, 198, 226, 225, 231, 236, 246, 256, 293
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325397.

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (2221)     (332)
                                     (111111)  (1111111)  (431)
                                                          (2222)
                                                          (11111111)
The first partition that has weakly decreasing differences (A320466) but is not counted under a(9) is (3,3,2,1), whose first and second differences are (0,-1,-1) and (-1,0) respectively.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[GreaterEqual@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]
Showing 1-8 of 8 results.