cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A007294 Number of partitions of n into nonzero triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 4, 4, 6, 7, 7, 10, 11, 11, 15, 17, 17, 22, 24, 25, 32, 35, 36, 44, 48, 50, 60, 66, 68, 81, 89, 92, 107, 117, 121, 141, 153, 159, 181, 197, 205, 233, 252, 262, 295, 320, 332, 372, 401, 417, 465, 501, 520, 575, 619, 645, 710, 763
Offset: 0

Views

Author

Keywords

Comments

Also number of decreasing integer sequences l(1) >= l(2) >= l(3) >= .. 0 such that sum('i*l(i)','i'=1..infinity)=n.
a(n) is also the number of partitions of n such that #{parts equal to i} >= #{parts equal to j} if i <= j.
Also the number of partitions of n (necessarily into distinct parts) where the part sizes are monotonically decreasing (including the last part, which is the difference between the last part and a "part" of size 0). These partitions are the conjugates of the partitions with number of parts of size i increasing. - Franklin T. Adams-Watters, Apr 08 2008
Also partitions with condition as in A179255, and additionally, if more than one part, first difference >= first part: for example, a(10)=7 as there are 7 such partitions of 10: 1+2+3+4 = 1+2+7 = 1+3+6 = 1+9 = 2+8 = 3+7 = 10. - Joerg Arndt, Mar 22 2011
Number of members of A181818 with a bigomega value of n (cf. A001222). - Matthew Vandermast, May 19 2012

Examples

			6 = 3+3 = 3+1+1+1 = 1+1+1+1+1+1 so a(6) = 4.
a(7)=4: Four sequences as above are (7,0,..), (5,1,0,..), (3,2,0,..),(2,1,1,0,..). They correspond to the partitions 1^7, 2 1^5, 2^2 1^3, 3 2 1^2 of seven or in the main description to the partitions 1^7, 3 1^4, 3^2 1, 6 1.
From _Gus Wiseman_, May 03 2019: (Start)
The a(1) = 1 through a(9) = 6 partitions using nonzero triangular numbers are the following. The Heinz numbers of these partitions are given by A325363.
  1   11   3     31     311     6        61        611        63
           111   1111   11111   33       331       3311       333
                                3111     31111     311111     6111
                                111111   1111111   11111111   33111
                                                              3111111
                                                              111111111
The a(1) = 1 through a(10) = 7 partitions with weakly decreasing multiplicities are the following. Equivalent to Matthew Vandermast's comment, the Heinz numbers of these partitions are given by A025487 (products of primorial numbers).
  1  11  21   211   2111   321     3211     32111     32211      4321
         111  1111  11111  2211    22111    221111    222111     322111
                           21111   211111   2111111   321111     2221111
                           111111  1111111  11111111  2211111    3211111
                                                      21111111   22111111
                                                      111111111  211111111
                                                                 1111111111
The a(1) = 1 through a(11) = 7 partitions with weakly increasing differences (where the last part is taken to be zero) are the following. The Heinz numbers of these partitions are given by A325362 (A = 10, B = 11).
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)    (A)     (B)
            (21)  (31)  (41)  (42)   (52)   (62)   (63)   (73)    (83)
                              (51)   (61)   (71)   (72)   (82)    (92)
                              (321)  (421)  (521)  (81)   (91)    (A1)
                                                   (531)  (631)   (731)
                                                   (621)  (721)   (821)
                                                          (4321)  (5321)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A102462.
Row sums of array A176723 and triangle A176724. - Wolfdieter Lang, Jul 19 2010
Cf. A179255 (condition only on differences), A179269 (parts strictly increasing instead of nondecreasing). - Joerg Arndt, Mar 22 2011
Row sums of A319797.

Programs

  • Haskell
    a007294 = p $ tail a000217_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 28 2013
    
  • Maple
    b:= proc(n,i) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=0 then 0
        else b(n, i-1) +b(n-i*(i+1)/2, i)
          fi
        end:
    a:= n-> b(n, floor(sqrt(2*n))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 22 2011
    isNondecrP :=proc(L) slp := DIFF(DIFF(L)) ; min(op(%)) >= 0 ; end proc:
    A007294 := proc(n) local a, p; a := 0 ; if n = 0 then return 1 ; end if; for p in combinat[partition](n) do if nops(p) = nops(convert(p, set)) then if isNondecrP(p) then if nops(p) =1 then a := a+1 ; elif op(2, p) >= 2*op(1, p) then a := a+1; end if; end if; end if; end do; a ; end proc:
    seq(A007294(n), n=0..30) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    CoefficientList[ Series[ 1/Product[1 - x^(i(i + 1)/2), {i, 1, 50}], {x, 0, 70}], x]
    (* also *)
    t = Table[n (n + 1)/2, {n, 1, 200}] ; p[n_] := IntegerPartitions[n, All, t]; Table[p[n], {n, 0, 12}] (*shows partitions*)
    a[n_] := Length@p@n; a /@Range[0, 80]
    (* Clark Kimberling, Mar 09 2014 *)
    b[n_, i_] := b[n, i] = Which[n < 0, 0, n == 0, 1, i == 0, 0, True, b[n, i-1]+b[n-i*(i+1)/2, i]]; a[n_] := b[n, Floor[Sqrt[2*n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],OrderedQ[Differences[Append[#,0]]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
    nmax = 58; t = Table[PolygonalNumber[n], {n, nmax}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[t, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
  • PARI
    N=66; Vec(1/prod(k=1,N,1-x^(k*(k+1)\2))+O(x^N)) \\ Joerg Arndt, Apr 14 2013
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    @lru_cache(maxsize=None)
    def A007294(n):
        @lru_cache(maxsize=None)
        def a(n): return is_square((n<<3)+1)
        @lru_cache(maxsize=None)
        def c(n): return sum(d for d in divisors(n,generator=True) if a(d))
        return (c(n)+sum(c(k)*A007294(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024
  • Sage
    def A007294(n):
        has_nondecreasing_diffs = lambda x: min(differences(x, 2)) >= 0
        special = lambda x: (x[1]-x[0]) >= x[0]
        allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_nondecreasing_diffs(x))
        return len([1 for x in Partitions(n, max_slope=-1) if allowed(x[::-1])]) # D. S. McNeil, Jan 06 2011
    

Formula

G.f.: 1/Product_{k>=2} (1-z^binomial(k, 2)).
For n>0: a(n) = b(n, 1) where b(n, k) = if n>k*(k+1)/2 then b(n-k*(k+1)/2, k) + b(n, k+1) else (if n=k*(k+1)/2 then 1 else 0). - Reinhard Zumkeller, Aug 26 2003
For n>0, a(n) is Euler Transform of [1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,...], i.e A010054, n>0. - Benedict W. J. Irwin, Jul 29 2016
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2) * Zeta(3/2) / (2^(7/2) * sqrt(3) * Pi * n^(3/2)) [Brigham 1950 (exponential part), Almkvist 2006]. - Vaclav Kotesovec, Dec 31 2016
G.f.: Sum_{i>=0} x^(i*(i+1)/2) / Product_{j=1..i} (1 - x^(j*(j+1)/2)). - Ilya Gutkovskiy, May 07 2017

Extensions

Additional comments from Roland Bacher, Jun 17 2001

A320348 Number of partition into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a_3, ... , a_{m-1} - a_m, a_m are different.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 9, 7, 13, 12, 13, 16, 22, 17, 28, 28, 31, 36, 50, 45, 63, 62, 74, 78, 102, 92, 123, 123, 146, 148, 191, 181, 228, 233, 280, 283, 348, 350, 420, 437, 518, 523, 616, 641, 727, 774, 884, 911, 1038, 1102, 1240, 1292, 1463, 1530, 1715, 1861, 2002
Offset: 1

Views

Author

Seiichi Manyama, Oct 11 2018

Keywords

Comments

Also the number of integer partitions of n whose parts cover an initial interval of positive integers with distinct multiplicities. Also the number of integer partitions of n whose multiplicities cover an initial interval of positive integers and are distinct (see A048767 for a bijection). - Gus Wiseman, May 04 2019

Examples

			n = 9
[9]        *********  a_1 = 9.
           ooooooooo
------------------------------------
[8, 1]             *        a_2 = 1.
            *******o  a_1 - a_2 = 7.
            oooooooo
------------------------------------
[7, 2]            **        a_2 = 2.
             *****oo  a_1 - a_2 = 5.
             ooooooo
------------------------------------
[5, 4]          ****        a_2 = 4.
               *oooo  a_1 - a_2 = 1.
               ooooo
------------------------------------
a(9) = 4.
From _Gus Wiseman_, May 04 2019: (Start)
The a(1) = 1 through a(11) = 9 strict partitions with distinct differences (where the last part is taken to be 0) are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A325388.
  (1)  (2)  (3)  (4)   (5)   (6)   (7)   (8)   (9)   (A)    (B)
                 (31)  (32)  (51)  (43)  (53)  (54)  (64)   (65)
                       (41)        (52)  (62)  (72)  (73)   (74)
                                   (61)  (71)  (81)  (82)   (83)
                                                     (91)   (92)
                                                     (631)  (A1)
                                                            (632)
                                                            (641)
                                                            (731)
The a(1) = 1 through a(10) = 6 partitions covering an initial interval of positive integers with distinct multiplicities are the following. The Heinz numbers of these partitions are given by A325326.
  1  11  111  211   221    21111   2221     22211     22221      222211
              1111  2111   111111  22111    221111    2211111    322111
                    11111          211111   2111111   21111111   2221111
                                   1111111  11111111  111111111  22111111
                                                                 211111111
                                                                 1111111111
The a(1) = 1 through a(10) = 6 partitions whose multiplicities cover an initial interval of positive integers and are distinct are the following (A = 10). The Heinz numbers of these partitions are given by A325337.
  (1)  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (A)
                 (211)  (221)  (411)  (322)  (332)  (441)  (433)
                        (311)         (331)  (422)  (522)  (442)
                                      (511)  (611)  (711)  (622)
                                                           (811)
                                                           (322111)
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[Append[#,0]]&]],{n,30}] (* Gus Wiseman, May 04 2019 *)

A325324 Number of integer partitions of n whose differences (with the last part taken to be 0) are distinct.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 4, 7, 7, 7, 10, 15, 13, 22, 25, 26, 31, 43, 39, 55, 54, 68, 75, 98, 97, 128, 135, 165, 177, 217, 223, 277, 282, 339, 356, 438, 444, 527, 553, 667, 694, 816, 868, 1015, 1054, 1279, 1304, 1538, 1631, 1849, 1958, 2304, 2360, 2701, 2899, 3267
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The Heinz numbers of these partitions are given by A325367.

Examples

			The a(1) = 1 through a(11) = 15 partitions (A = 10, B = 11):
  (1)  (2)   (3)  (4)   (5)    (6)    (7)    (8)    (9)    (A)    (B)
       (11)       (22)  (32)   (33)   (43)   (44)   (54)   (55)   (65)
                  (31)  (41)   (51)   (52)   (53)   (72)   (64)   (74)
                        (311)  (411)  (61)   (62)   (81)   (73)   (83)
                                      (322)  (71)   (441)  (82)   (92)
                                      (331)  (332)  (522)  (91)   (A1)
                                      (511)  (611)  (711)  (433)  (443)
                                                           (622)  (533)
                                                           (631)  (551)
                                                           (811)  (632)
                                                                  (641)
                                                                  (722)
                                                                  (731)
                                                                  (911)
                                                                  (6311)
For example, (6,3,1,1) has differences (-3,-2,0,-1), which are distinct, so (6,3,1,1) is counted under a(11).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[Append[#,0]]&]],{n,0,30}]

A320466 Number of partitions of n such that the successive differences of consecutive parts are nonincreasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 7, 9, 12, 12, 13, 18, 17, 21, 25, 24, 27, 34, 33, 38, 44, 43, 47, 58, 56, 62, 70, 70, 78, 90, 84, 96, 109, 108, 118, 132, 127, 140, 158, 158, 167, 189, 185, 204, 221, 218, 236, 260, 261, 282, 301, 299, 322, 358, 350, 376, 405, 404, 432, 472, 466, 500
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) >= p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are weakly decreasing. The Heinz numbers of these partitions are given by A325361. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are weakly decreasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(10) = 12 such partitions of 10:
01: [10]
02: [1, 9]
03: [2, 8]
04: [3, 7]
05: [4, 6]
06: [5, 5]
07: [1, 4, 5]
08: [2, 4, 4]
09: [1, 2, 3, 4]
10: [1, 3, 3, 3]
11: [2, 2, 2, 2, 2]
12: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
There are a(11) = 13 such partitions of 11:
01: [11]
02: [1, 10]
03: [2, 9]
04: [3, 8]
05: [4, 7]
06: [5, 6]
07: [1, 4, 6]
08: [1, 5, 5]
09: [2, 4, 5]
10: [3, 4, 4]
11: [2, 3, 3, 3]
12: [1, 2, 2, 2, 2, 2]
13: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
		

Crossrefs

Cf. A320382 (distinct parts, nonincreasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320466(n)
      (0..n).map{|i| f(i)}
    end
    p A320466(50)

A325390 Heinz number of the negated differences plus one of the integer partition with Heinz number n (with the last part taken to be 0).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 10, 15, 13, 18, 17, 21, 15, 24, 19, 18, 23, 30, 25, 33, 29, 36, 14, 39, 20, 42, 31, 27, 37, 48, 35, 51, 21, 36, 41, 57, 55, 60, 43, 45, 47, 66, 30, 69, 53, 72, 22, 30, 65, 78, 59, 36, 35, 84, 85, 87, 61, 54, 67, 93, 50, 96, 49, 63, 71
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).

Examples

			The Heinz number of (6,3,1) is 130, and its negated differences plus one are (4,3,2), which has Heinz number 105, so a(130) = 105.
		

Crossrefs

Number of appearances of n is A325392(n).
Positions of squarefree numbers are A325367.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Times@@Prime/@(1-Differences[Append[primeptn[n],0]]),{n,100}]

A325364 Heinz numbers of integer partitions whose differences (with the last part taken to be zero) are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 35, 37, 41, 43, 47, 49, 53, 54, 55, 59, 61, 64, 65, 67, 71, 73, 75, 77, 79, 81, 83, 89, 91, 97, 101, 103, 105, 107, 109, 113, 119, 121, 125, 127, 128, 131, 133, 137, 139
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A320509.

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],GreaterEqual@@Differences[Append[primeptn[#],0]]&]

A325389 Heinz numbers of integer partitions whose augmented differences are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325350.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A179269 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are increasing, and first difference > first part.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 10, 10, 10, 13, 14, 14, 18, 19, 19, 23, 25, 25, 30, 32, 33, 38, 41, 42, 48, 52, 54, 60, 65, 67, 75, 81, 84, 92, 99, 103, 113, 121, 126, 136, 147, 153, 165, 177, 184, 197, 213, 221, 236, 253, 264, 280, 301, 313, 331, 355, 371, 390, 418, 435, 458
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2011

Keywords

Comments

Conditions as in A179254; additionally, if more than 1 part, first difference > first part.
Equivalently, number of partitions for which the sequence of part counts by decreasing part size is 1, 2, 3, ... - Olivier Gérard, Jul 28 2017

Examples

			a(10) = 5 as there are 5 such partitions of 10: 1 + 3 + 6 = 1 + 9 = 2 + 8 = 3 + 7 = 10.
a(10) = 5 as there are 5 such partitions of 10: 10, 8 + 1 + 1, 6 + 2 + 2, 4 + 3 + 3, 3 + 2 + 2 + 1 + 1 + 1 (second definition).
From _Gus Wiseman_, May 04 2019: (Start)
The a(3) = 1 through a(13) = 7 partitions whose differences are strictly increasing (with the last part taken to be 0) are the following (A = 10, B = 11, C = 12, D = 13). The Heinz numbers of these partitions are given by A325460.
  (3)  (4)   (5)   (6)   (7)   (8)   (9)   (A)    (B)    (C)    (D)
       (31)  (41)  (51)  (52)  (62)  (72)  (73)   (83)   (93)   (94)
                         (61)  (71)  (81)  (82)   (92)   (A2)   (A3)
                                           (91)   (A1)   (B1)   (B2)
                                           (631)  (731)  (831)  (C1)
                                                                (841)
                                                                (931)
The a(3) = 1 through a(11) = 5 partitions whose multiplicities form an initial interval of positive integers are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A307895.
  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (A)       (B)
       (211)  (311)  (411)  (322)  (422)  (522)  (433)     (533)
                            (511)  (611)  (711)  (622)     (722)
                                                 (811)     (911)
                                                 (322111)  (422111)
(End)
		

Crossrefs

Cf. A179254 (condition only on differences), A007294 (nondecreasing instead of strictly increasing), A179255, A320382, A320385, A320387, A320388.

Programs

  • Mathematica
    Table[Length@
      Select[IntegerPartitions[n],
       And @@ Equal[Range[Length[Split[#]]], Length /@ Split[#]] &], {n,
    0, 40}]   (* Olivier Gérard, Jul 28 2017 *)
    Table[Length[Select[IntegerPartitions[n],Less@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
  • PARI
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, L[w-1][i-k*t]))); Mat(L)}
    seq(n)={my(M=R(n)); concat([1], vector(n, i, vecsum(M[i,])))} \\ Andrew Howroyd, Aug 27 2019
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A179269(n)
      (0..n).map{|i| f(i)}
    end
    p A179269(50) # Seiichi Manyama, Oct 12 2018
    
  • Sage
    def A179269(n):
        has_increasing_diffs = lambda x: min(differences(x,2)) >= 1
        special = lambda x: (x[1]-x[0]) > x[0]
        allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_increasing_diffs(x))
        return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
    # D. S. McNeil, Jan 06 2011
    

Formula

G.f.: Sum_{k>=0} x^(k*(k+1)*(k+2)/6) / Product_{j=1..k} (1 - x^(j*(j+1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 25 2019

A325361 Heinz numbers of integer partitions whose differences are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A320466.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   72: {1,1,1,2,2}
   76: {1,1,8}
   78: {1,2,6}
   80: {1,1,1,1,3}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],GreaterEqual@@Differences[primeptn[#]]&]

A325350 Number of integer partitions of n whose augmented differences are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 17, 21, 26, 32, 38, 46, 56, 66, 78, 92, 106, 124, 145, 166, 191, 220, 249, 284, 325, 366, 413, 468, 523, 586, 659, 733, 817, 913, 1011, 1121, 1245, 1373, 1515, 1674, 1838, 2020, 2223, 2433, 2664, 2920, 3184, 3476, 3797, 4129, 4492
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325389.

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (31)    (32)     (42)      (52)       (53)
             (111)  (211)   (41)     (51)      (61)       (62)
                    (1111)  (311)    (321)     (421)      (71)
                            (2111)   (411)     (511)      (521)
                            (11111)  (3111)    (3211)     (611)
                                     (21111)   (4111)     (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
For example, (4,2,1,1) has augmented differences (3,2,1,1), which are weakly decreasing, so (4,2,1,1) is counted under a(8).
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

Formula

G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(j*(j+1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 25 2019
Showing 1-10 of 13 results. Next