cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A049988 Number of nondecreasing arithmetic progressions of positive integers with sum n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 5, 7, 9, 9, 7, 14, 8, 11, 16, 13, 10, 20, 11, 17, 21, 16, 13, 27, 17, 18, 26, 22, 16, 35, 17, 23, 31, 23, 25, 41, 20, 25, 36, 33, 22, 46, 23, 31, 48, 30, 25, 52, 29, 38, 47, 36, 28, 57, 37, 41, 52, 37, 31, 71, 32, 39, 62, 44, 43, 69, 35, 45, 62, 57, 37, 79, 38
Offset: 0

Views

Author

Keywords

Comments

From Gus Wiseman, May 03 2019: (Start)
a(n) is the number of integer partitions of n with equal differences. The Heinz numbers of these partitions are given by A325328. For example, the a(1) = 1 through a(9) = 9 partitions are:
1 2 3 4 5 6 7 8 9
11 21 22 32 33 43 44 54
111 31 41 42 52 53 63
1111 11111 51 61 62 72
222 1111111 71 81
321 2222 333
111111 11111111 432
531
111111111
(End)
From Petros Hadjicostas, Sep 29 2019: (Start)
We show how Leroy Quet's g.f. Sum_{n >= 0} a(n)*x^n = 1/(1-x) + Sum_{k >= 2} x^k/(1-x^(k*(k-1)/2))/(1-x^k) in the Formula section below can be derived from Graeme McRae's g.f. for A049982 (see one of the links below).
Let b(n) = A049982(n) for n >= 1. Then Graeme McRae proved that Sum_{n >= 1} b(n)*x^n = Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = A000217(k) = k*(k+1)/2.
Since a(n) - b(n) = A000005(n) for n >= 1, to finish the proof, we only need to show that K(x) := 1 + Sum_{n >= 1} a(n)*x^n - Sum_{n >= 1} b(n)*x^n is the g.f. of A000005 (= number of divisors). But it is easy to show that K(x) = 1 + Sum_{k >= 1} x^k/(1 - x^k) = 1 + Sum_{n >= 1} A000005(n)*x^n (Lambert series for the number of divisors function). (End)

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==0,1,Block[{i,c=Floor[(n-1)/2]+DivisorSigma[0,n]},Do[i=1;While[i*kGus Wiseman, May 07 2019 *)
    Table[Length[Select[IntegerPartitions[n],SameQ@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    seq(n)={Vec(1/(1-x) + sum(k=2, n, x^k/(1 - x^(k*(k-1)/2))/(1-x^k) + O(x*x^n)))} \\ Andrew Howroyd, Sep 28 2019

Formula

G.f.: 1/(1-x) + Sum_{k>=2} x^k/(1-x^(k*(k-1)/2))/(1-x^k). - Leroy Quet, Apr 08 2010. [Edited by Gus Wiseman, May 03 2019]
a(n) = A049982(n) + A000005(n) = A049980(n) + A000005(n) - 1 for n >= 1. - Petros Hadjicostas, Sep 28 2019

Extensions

Edited by Max Alekseyev, May 03 2010
a(0) = 1 prepended by Gus Wiseman, May 03 2019

A355536 Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime, row n is empty.

Original entry on oeis.org

0, 1, 0, 0, 0, 2, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 2, 2, 4, 0, 0, 1, 0, 5, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 3, 6, 1, 0, 1, 0, 7, 4, 0, 0, 2, 1, 2, 0, 4, 0, 1, 8, 0, 0, 0, 1, 0, 2, 0, 5, 0, 5, 1, 0, 0, 2, 0, 0, 3, 6, 9, 0, 1, 1, 10, 0, 2, 0, 0, 0, 0, 0, 3, 1, 3, 0, 6
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The version where zero is prepended to the prime indices is A287352.
One could argue that row n = 1 is empty, but adding it changes only the offset, not the data.

Examples

			Triangle begins (showing n, prime indices, differences*):
   2:    (1)       .
   3:    (2)       .
   4:   (1,1)      0
   5:    (3)       .
   6:   (1,2)      1
   7:    (4)       .
   8:  (1,1,1)    0 0
   9:   (2,2)      0
  10:   (1,3)      2
  11:    (5)       .
  12:  (1,1,2)    0 1
  13:    (6)       .
  14:   (1,4)      3
  15:   (2,3)      1
  16: (1,1,1,1)  0 0 0
		

Crossrefs

Row-lengths are A001222 minus one.
The prime indices are A112798, sum A056239.
Row-sums are A243055.
Constant rows have indices A325328.
The Heinz numbers of the rows plus one are A325352.
Strict rows have indices A325368.
Row minima are A355524.
Row maxima are A286470, also A355526.
An adjusted version is A358169, reverse A355534.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Differences[primeMS[n]],{n,2,100}]

A014405 Number of arithmetic progressions of 3 or more positive integers, strictly increasing with sum n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 3, 0, 1, 5, 1, 0, 6, 0, 2, 7, 2, 0, 8, 2, 2, 9, 3, 0, 13, 0, 2, 11, 3, 4, 15, 0, 3, 13, 6, 0, 18, 0, 4, 20, 4, 0, 19, 2, 8, 18, 5, 0, 23, 6, 6, 20, 5, 0, 30, 0, 5, 25, 6, 7, 29, 0, 6, 24, 15, 0, 32, 0, 6, 34, 7, 4, 34, 0, 14, 31, 7, 0, 39, 9, 7, 31, 9, 0, 49, 5, 9, 33, 8, 10, 42, 0, 12
Offset: 1

Views

Author

Keywords

Examples

			E.g., 15 = 1+2+3+4+5 = 1+5+9 = 2+5+8 = 3+5+7 = 4+5+6.
		

Crossrefs

Programs

  • PARI
    a(n)= t=0; st=0; forstep(s=(n-3)\3,1,-1, st++; for(c=1,st, m=3; w=m*(s+c); while(wRick L. Shepherd, Aug 30 2006

Formula

G.f.: Sum_{k >= 3} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 3} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
a(n) = A049992(n) - A023645(n). - Antti Karttunen, Feb 20 2023

A355534 Irregular triangle read by rows where row n lists the augmented differences of the reversed prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 1, 1, 1, 1, 2, 3, 1, 5, 2, 1, 1, 6, 4, 1, 2, 2, 1, 1, 1, 1, 7, 1, 2, 1, 8, 3, 1, 1, 3, 2, 5, 1, 9, 2, 1, 1, 1, 1, 3, 6, 1, 1, 1, 2, 4, 1, 1, 10, 2, 2, 1, 11, 1, 1, 1, 1, 1, 4, 2, 7, 1, 2, 3, 1, 2, 1, 1, 12, 8, 1, 5, 2, 3, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
One could argue that row n = 1 is empty, but adding it changes only the offset, not the data.

Examples

			Triangle begins:
   2: 1
   3: 2
   4: 1 1
   5: 3
   6: 2 1
   7: 4
   8: 1 1 1
   9: 1 2
  10: 3 1
  11: 5
  12: 2 1 1
  13: 6
  14: 4 1
  15: 2 2
  16: 1 1 1 1
For example, the reversed prime indices of 825 are (5,3,3,2), which have augmented differences (3,1,2,2).
		

Crossrefs

Crossrefs found in the link are not repeated here.
Row-lengths are A001222.
Row-sums are A252464
Other similar triangles are A287352, A091602.
Constant rows have indices A307824.
The Heinz numbers of the rows are A325351.
Strict rows have indices A325366.
Row minima are A355531, non-augmented A355524, also A355525.
Row maxima are A355535, non-augmented A286470, also A355526.
The non-augmented version is A355536, also A355533.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A063778 a(n) = the least integer that is polygonal in exactly n ways.

Original entry on oeis.org

3, 6, 15, 36, 225, 561, 1225, 11935, 11781, 27405, 220780, 203841, 3368925, 4921840, 7316001, 33631521, 142629201, 879207616, 1383958576, 3800798001, 12524486976, 181285005825, 118037679760, 239764947345, 738541591425, 1289707733601, 1559439365121
Offset: 1

Views

Author

David W. Wilson, Aug 16 2001

Keywords

Comments

a(n) has exactly n representations as an m-gonal number P(m,r) = r*((m-2)*r-(m-4))/2, with m>2, r>1.
a(28) > 4*10^12. - Donovan Johnson, Dec 08 2010
From Husnain Raza, Jan 01 2024: (Start)
a(28) <= 14189300403201
a(29) <= 100337325689601
a(30) <= 1735471549713825
a(31) <= 334830950355825
a(32) <= 1473426934890625
a(33) <= 5409964920838401
(End)

Examples

			a(3) = 15 because 15 is the least integer which is polygonal in 3 ways (15 is n-gonal for n = 3, 6, 15).
		

Crossrefs

Cf. A177025 (number of different ways to represent n as a polygonal).
Cf. A129654 (number of different ways to represent n as general polygonal).

Programs

  • Maple
    A063778 := proc(nmax) local a,n,ps ; a := [seq(0,i=1..nmax)] ; n := 1 ; while true do ps := A129654(n) ; if ps > 0 and ps <= nmax and n > 1 then if op(ps,a) = 0 then a := subsop(ps=n,a) ; print(a) ; fi ; fi ; n := n+1 ; end: RETURN(a) ; end: A063778(30) ; # R. J. Mathar, May 14 2007
  • Mathematica
    P[m_, r_] := P[m, r] = r*(4 + m*(r - 1) - 2*r)/2;
    a[n_Integer] := a[n] = Module[{c, r, m, p, f}, p = 0; f = False; While[!f, p++; c = 0; For[m = 3, m <= p, m++, For[r = 1, r <= p, r++, If[p == P[m, r], c++;];];]; If[c == n, f = True;];]; p];
    Table[a[n], {n, 1, 5}] (* Robert P. P. McKone, Jan 02 2024 *)
  • PARI
    a(n) = my(k=3); while (sum(p=3, k, ispolygonal(k, p)) != n, k++); k; \\ Michel Marcus, Aug 17 2024

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 23 2007
a(22)-a(27) from Donovan Johnson, Dec 08 2010

A307824 Heinz numbers of integer partitions whose augmented differences are all equal.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 19, 23, 29, 31, 32, 37, 41, 43, 47, 53, 55, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 119, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A129654.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
   11: {5}
   13: {6}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A014406 Number of strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 3, 4, 4, 7, 7, 8, 13, 14, 14, 20, 20, 22, 29, 31, 31, 39, 41, 43, 52, 55, 55, 68, 68, 70, 81, 84, 88, 103, 103, 106, 119, 125, 125, 143, 143, 147, 167, 171, 171, 190, 192, 200, 218, 223, 223, 246, 252, 258, 278, 283, 283, 313, 313, 318, 343, 349, 356, 385, 385
Offset: 1

Views

Author

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(8) = 1 because we have only the following strictly increasing arithmetic progression of positive integers with at least 3 terms and sum <= 8: 1+2+3.
a(9) = 3 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 9: 1+2+3, 1+3+5, and 2+3+4.
a(10) = 4 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 10: 1+2+3, 1+3+5, 2+3+4, and 1+2+3+4.
(End)
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} A014405(k). - Sean A. Irvine, Oct 22 2018
G.f.: (g.f. of A014405)/(1-x). - Petros Hadjicostas, Sep 29 2019

Extensions

a(59)-a(67) corrected by Fausto A. C. Cariboni, Oct 02 2018

A049989 a(n) is the number of arithmetic progressions of positive integers, nondecreasing with sum <= n.

Original entry on oeis.org

1, 3, 6, 10, 14, 21, 26, 33, 42, 51, 58, 72, 80, 91, 107, 120, 130, 150, 161, 178, 199, 215, 228, 255, 272, 290, 316, 338, 354, 389, 406, 429, 460, 483, 508, 549, 569, 594, 630, 663, 685, 731, 754, 785, 833, 863, 888, 940, 969, 1007, 1054, 1090, 1118, 1175, 1212, 1253, 1305, 1342, 1373, 1444, 1476, 1515, 1577, 1621
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={my(w=(sqrtint(8*n+1)-1)\2+1); Vec(x/(1-x)^2 + sum(k=2, n, x^k/(1 - if(k<=w, x^(k*(k-1)/2)))/(1-x^k) + O(x*x^n))/(1-x))} \\ Andrew Howroyd, Sep 28 2019

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049988(k). [Note that the offset of A049988 is 0.]
G.f.: (-1 + g.f. of A049988)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 28 2019

A177025 Number of ways to represent n as a polygonal number.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 2, 1, 1, 4, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 2, 3, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 3, 1, 1, 2, 3
Offset: 3

Views

Author

Vladimir Shevelev, May 01 2010

Keywords

Comments

Frequency of n in the array A139601 or A086270 of polygonal numbers.
Since n is always n-gonal number, a(n) >= 1.
Conjecture: Every positive integer appears in the sequence.
Records of 2, 3, 4, 5, ... are reached at n = 6, 15, 36, 225, 561, 1225, ... see A063778. [R. J. Mathar, Aug 15 2010]

References

  • J. J. Tattersall, Elementary Number Theory in Nine chapters, 2nd ed (2005), Cambridge Univ. Press, page 22 Problem 26, citing Wertheim (1897)

Crossrefs

Programs

  • Maple
    A177025 := proc(p)
        local ii,a,n,s,m ;
        ii := 2*p ;
        a := 0 ;
        for n in numtheory[divisors](ii) do
            if n > 2 then
                s := ii/n ;
                if (s-2) mod (n-1) = 0 then
                    a := a+1 ;
                end if;
            end if;
        end do:
        return a;
    end proc: # R. J. Mathar, Jan 10 2013
  • Mathematica
    nn = 100; t = Table[0, {nn}]; Do[k = 2; While[p = k*((n - 2) k - (n - 4))/2; p <= nn, t[[p]]++; k++], {n, 3, nn}]; t (* T. D. Noe, Apr 13 2011 *)
    Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]] - 1, {n, 3, 100}] (* Jonathan Sondow, May 09 2014 *)
  • PARI
    a(n) = sum(i=3, n, ispolygonal(n, i)); \\ Michel Marcus, Jul 08 2014
    
  • Python
    from sympy import divisors
    def a(n):
        i=2*n
        x=0
        for d in divisors(i):
            if d>2:
                s=i/d
                if (s - 2)%(d - 1)==0: x+=1
        return x # Indranil Ghosh, Apr 28 2017, translated from Maple code by R. J. Mathar

Formula

a(n) = A129654(n) - 1.
G.f.: x * Sum_{k>=2} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020

Extensions

Extended by R. J. Mathar, Aug 15 2010

A239550 Number A(n,k) of compositions of n such that the first part is 1 and the second differences of the parts are in {-k,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 4, 4, 3, 1, 1, 1, 2, 4, 7, 6, 2, 1, 1, 1, 2, 4, 7, 11, 9, 2, 1, 1, 1, 2, 4, 8, 13, 18, 13, 3, 1, 1, 1, 2, 4, 8, 15, 23, 32, 18, 3, 1, 1, 1, 2, 4, 8, 15, 28, 40, 53, 24, 2, 1, 1, 1, 2, 4, 8, 16, 29, 52, 73, 89, 34, 3
Offset: 0

Views

Author

Alois P. Heinz, Mar 21 2014

Keywords

Examples

			A(6,0) = 3: [1,1,1,1,1,1], [1,2,3], [1,5].
A(5,1) = 4: [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,4].
A(4,2) = 4: [1,1,1,1], [1,1,2], [1,2,1], [1,3].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
  2,  3,  4,  4,  4,  4,  4,  4,  4, ...
  2,  4,  7,  7,  8,  8,  8,  8,  8, ...
  3,  6, 11, 13, 15, 15, 16, 16, 16, ...
  2,  9, 18, 23, 28, 29, 31, 31, 32, ...
  2, 13, 32, 40, 52, 56, 60, 61, 63, ...
		

Crossrefs

Main diagonal gives A239561.

Programs

  • Maple
    b:= proc(n, i, j, k) option remember; `if`(n=0, 1,
          `if`(i=0, add(b(n-h, j, h, k), h=1..n), add(
           b(n-h, j, h, k), h=max(1, 2*j-i-k)..min(n, 2*j-i+k))))
        end:
    A:= (n, k)-> `if`(n=0, 1, b(n-1, 0, 1, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, 1, If[i == 0, Sum[b[n-h, j, h, k], {h, 1, n}], Sum[b[n-h, j, h, k], {h, Max[1, 2*j - i - k], Min[n, 2*j - i + k]}]]] ; A[n_, k_] := If[n == 0, 1, b[n-1, 0, 1, k]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 22 2015, after Alois P. Heinz *)
Showing 1-10 of 21 results. Next