cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A049988 Number of nondecreasing arithmetic progressions of positive integers with sum n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 5, 7, 9, 9, 7, 14, 8, 11, 16, 13, 10, 20, 11, 17, 21, 16, 13, 27, 17, 18, 26, 22, 16, 35, 17, 23, 31, 23, 25, 41, 20, 25, 36, 33, 22, 46, 23, 31, 48, 30, 25, 52, 29, 38, 47, 36, 28, 57, 37, 41, 52, 37, 31, 71, 32, 39, 62, 44, 43, 69, 35, 45, 62, 57, 37, 79, 38
Offset: 0

Views

Author

Keywords

Comments

From Gus Wiseman, May 03 2019: (Start)
a(n) is the number of integer partitions of n with equal differences. The Heinz numbers of these partitions are given by A325328. For example, the a(1) = 1 through a(9) = 9 partitions are:
1 2 3 4 5 6 7 8 9
11 21 22 32 33 43 44 54
111 31 41 42 52 53 63
1111 11111 51 61 62 72
222 1111111 71 81
321 2222 333
111111 11111111 432
531
111111111
(End)
From Petros Hadjicostas, Sep 29 2019: (Start)
We show how Leroy Quet's g.f. Sum_{n >= 0} a(n)*x^n = 1/(1-x) + Sum_{k >= 2} x^k/(1-x^(k*(k-1)/2))/(1-x^k) in the Formula section below can be derived from Graeme McRae's g.f. for A049982 (see one of the links below).
Let b(n) = A049982(n) for n >= 1. Then Graeme McRae proved that Sum_{n >= 1} b(n)*x^n = Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = A000217(k) = k*(k+1)/2.
Since a(n) - b(n) = A000005(n) for n >= 1, to finish the proof, we only need to show that K(x) := 1 + Sum_{n >= 1} a(n)*x^n - Sum_{n >= 1} b(n)*x^n is the g.f. of A000005 (= number of divisors). But it is easy to show that K(x) = 1 + Sum_{k >= 1} x^k/(1 - x^k) = 1 + Sum_{n >= 1} A000005(n)*x^n (Lambert series for the number of divisors function). (End)

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==0,1,Block[{i,c=Floor[(n-1)/2]+DivisorSigma[0,n]},Do[i=1;While[i*kGus Wiseman, May 07 2019 *)
    Table[Length[Select[IntegerPartitions[n],SameQ@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    seq(n)={Vec(1/(1-x) + sum(k=2, n, x^k/(1 - x^(k*(k-1)/2))/(1-x^k) + O(x*x^n)))} \\ Andrew Howroyd, Sep 28 2019

Formula

G.f.: 1/(1-x) + Sum_{k>=2} x^k/(1-x^(k*(k-1)/2))/(1-x^k). - Leroy Quet, Apr 08 2010. [Edited by Gus Wiseman, May 03 2019]
a(n) = A049982(n) + A000005(n) = A049980(n) + A000005(n) - 1 for n >= 1. - Petros Hadjicostas, Sep 28 2019

Extensions

Edited by Max Alekseyev, May 03 2010
a(0) = 1 prepended by Gus Wiseman, May 03 2019

A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A049988.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
For example, 60 is the Heinz number of (3,2,1,1), which has differences (-1,-1,0), which are not equal, so 60 does not belong to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[primeptn[#]]&]

A129654 Number of different ways to represent n as general polygonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)) = n>1, for m,r>1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 3, 3, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 5, 2, 2, 3, 3, 2, 3, 2, 2, 5, 3, 2, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 3, 2, 3, 2, 2, 3, 4, 3, 5, 2, 2, 3, 4, 2, 3, 2, 2, 4, 3, 2, 4, 2, 2, 5, 3, 2, 3, 3, 2, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 5, 3
Offset: 2

Views

Author

Alexander Adamchuk, Apr 27 2007

Keywords

Comments

The indices k of the first appearance of number n in a(k) are listed in A063778(n) = {2,3,6,15,36,225,...} = Least number k>1 such that k could be represented in n different ways as general m-gonal number P(m,r) = 1/2*r*((m-2)*r-(m-4)).
From Gus Wiseman, May 03 2019: (Start)
Also the number of integer partitions of n whose augmented differences are all equal, where the augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k; for example aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Equivalently, a(n) is the number of integer partitions of n whose differences are all equal to the last part minus one. The Heinz numbers of these partitions are given by A307824. For example, the a(35) = 5 partitions are:
(35)
(23,12)
(11,9,7,5,3)
(8,7,6,5,4,3,2)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
(End)

Examples

			a(6) = 3 because 6 = P(2,6) = P(3,3) = P(6,2).
		

Crossrefs

Programs

  • Maple
    A129654 := proc(n) local resul, dvs, i, r, m ;
       dvs := numtheory[divisors](2*n) ;
       resul := 0 ;
       for i from 1 to nops(dvs) do
          r := op(i, dvs) ;
          if r > 1 then
             m := (2*n/r-4+2*r)/(r-1) ;
             if is(m, integer) then
                resul := resul+1 ;
             fi ;
          fi ;
       od ;
       RETURN(resul) ;
    end: # R. J. Mathar, May 14 2007
  • Mathematica
    a[n_] := (dvs = Divisors[2*n]; resul = 0; For[i = 1, i <= Length[dvs], i++, r = dvs[[i]]; If[r > 1, m = (2*n/r-4+2*r)/(r-1); If[IntegerQ[m], resul = resul+1 ] ] ]; resul); Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Sep 13 2012, translated from R. J. Mathar's Maple program *)
    Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]], {n, 2, 106}] (* Jonathan Sondow, May 09 2014 *)
    atpms[n_]:=Select[Join@@Table[i*Range[k,1,-1],{k,n},{i,0,n}],Total[#+1]==n&];
    Table[Length[atpms[n]],{n,100}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    a(n) = sumdiv(2*n, d, (d>1) && (2*n/d + 2*d - 4) % (d-1) == 0); \\ Daniel Suteu, Dec 22 2018

Formula

a(n) = A177025(n) + 1.
G.f.: x * Sum_{k>=1} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020

A014405 Number of arithmetic progressions of 3 or more positive integers, strictly increasing with sum n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 3, 0, 1, 5, 1, 0, 6, 0, 2, 7, 2, 0, 8, 2, 2, 9, 3, 0, 13, 0, 2, 11, 3, 4, 15, 0, 3, 13, 6, 0, 18, 0, 4, 20, 4, 0, 19, 2, 8, 18, 5, 0, 23, 6, 6, 20, 5, 0, 30, 0, 5, 25, 6, 7, 29, 0, 6, 24, 15, 0, 32, 0, 6, 34, 7, 4, 34, 0, 14, 31, 7, 0, 39, 9, 7, 31, 9, 0, 49, 5, 9, 33, 8, 10, 42, 0, 12
Offset: 1

Views

Author

Keywords

Examples

			E.g., 15 = 1+2+3+4+5 = 1+5+9 = 2+5+8 = 3+5+7 = 4+5+6.
		

Crossrefs

Programs

  • PARI
    a(n)= t=0; st=0; forstep(s=(n-3)\3,1,-1, st++; for(c=1,st, m=3; w=m*(s+c); while(wRick L. Shepherd, Aug 30 2006

Formula

G.f.: Sum_{k >= 3} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 3} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
a(n) = A049992(n) - A023645(n). - Antti Karttunen, Feb 20 2023

A355534 Irregular triangle read by rows where row n lists the augmented differences of the reversed prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 1, 1, 1, 1, 2, 3, 1, 5, 2, 1, 1, 6, 4, 1, 2, 2, 1, 1, 1, 1, 7, 1, 2, 1, 8, 3, 1, 1, 3, 2, 5, 1, 9, 2, 1, 1, 1, 1, 3, 6, 1, 1, 1, 2, 4, 1, 1, 10, 2, 2, 1, 11, 1, 1, 1, 1, 1, 4, 2, 7, 1, 2, 3, 1, 2, 1, 1, 12, 8, 1, 5, 2, 3, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
One could argue that row n = 1 is empty, but adding it changes only the offset, not the data.

Examples

			Triangle begins:
   2: 1
   3: 2
   4: 1 1
   5: 3
   6: 2 1
   7: 4
   8: 1 1 1
   9: 1 2
  10: 3 1
  11: 5
  12: 2 1 1
  13: 6
  14: 4 1
  15: 2 2
  16: 1 1 1 1
For example, the reversed prime indices of 825 are (5,3,3,2), which have augmented differences (3,1,2,2).
		

Crossrefs

Crossrefs found in the link are not repeated here.
Row-lengths are A001222.
Row-sums are A252464
Other similar triangles are A287352, A091602.
Constant rows have indices A307824.
The Heinz numbers of the rows are A325351.
Strict rows have indices A325366.
Row minima are A355531, non-augmented A355524, also A355525.
Row maxima are A355535, non-augmented A286470, also A355526.
The non-augmented version is A355536, also A355533.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A014406 Number of strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 3, 4, 4, 7, 7, 8, 13, 14, 14, 20, 20, 22, 29, 31, 31, 39, 41, 43, 52, 55, 55, 68, 68, 70, 81, 84, 88, 103, 103, 106, 119, 125, 125, 143, 143, 147, 167, 171, 171, 190, 192, 200, 218, 223, 223, 246, 252, 258, 278, 283, 283, 313, 313, 318, 343, 349, 356, 385, 385
Offset: 1

Views

Author

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(8) = 1 because we have only the following strictly increasing arithmetic progression of positive integers with at least 3 terms and sum <= 8: 1+2+3.
a(9) = 3 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 9: 1+2+3, 1+3+5, and 2+3+4.
a(10) = 4 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 10: 1+2+3, 1+3+5, 2+3+4, and 1+2+3+4.
(End)
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} A014405(k). - Sean A. Irvine, Oct 22 2018
G.f.: (g.f. of A014405)/(1-x). - Petros Hadjicostas, Sep 29 2019

Extensions

a(59)-a(67) corrected by Fausto A. C. Cariboni, Oct 02 2018

A325327 Heinz numbers of multiples of triangular partitions, or finite arithmetic progressions with offset 0.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers of the form Product_{k = 1..b} prime(k * c) for some b >= 0 and c > 0.
The enumeration of these partitions by sum is given by A007862.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   21: {2,4}
   23: {9}
   29: {10}
   30: {1,2,3}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[Append[primeptn[#],0]]&]

A049989 a(n) is the number of arithmetic progressions of positive integers, nondecreasing with sum <= n.

Original entry on oeis.org

1, 3, 6, 10, 14, 21, 26, 33, 42, 51, 58, 72, 80, 91, 107, 120, 130, 150, 161, 178, 199, 215, 228, 255, 272, 290, 316, 338, 354, 389, 406, 429, 460, 483, 508, 549, 569, 594, 630, 663, 685, 731, 754, 785, 833, 863, 888, 940, 969, 1007, 1054, 1090, 1118, 1175, 1212, 1253, 1305, 1342, 1373, 1444, 1476, 1515, 1577, 1621
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={my(w=(sqrtint(8*n+1)-1)\2+1); Vec(x/(1-x)^2 + sum(k=2, n, x^k/(1 - if(k<=w, x^(k*(k-1)/2)))/(1-x^k) + O(x*x^n))/(1-x))} \\ Andrew Howroyd, Sep 28 2019

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049988(k). [Note that the offset of A049988 is 0.]
G.f.: (-1 + g.f. of A049988)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 28 2019

A355531 Minimal augmented difference between adjacent reversed prime indices of n; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 1, 1, 5, 1, 6, 1, 2, 1, 7, 1, 8, 1, 2, 1, 9, 1, 1, 1, 1, 1, 10, 1, 11, 1, 2, 1, 2, 1, 12, 1, 2, 1, 13, 1, 14, 1, 1, 1, 15, 1, 1, 1, 2, 1, 16, 1, 3, 1, 2, 1, 17, 1, 18, 1, 1, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 1, 1, 2, 1, 22, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).

Examples

			The reversed prime indices of 825 are (5,3,3,2), with augmented differences (3,1,2,2), so a(825) = 1.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Positions of first appearances are A008578.
Positions of 1's are 2 followed by A013929.
The non-augmented maximal version is A286470, also A355526.
The non-augmented version is A355524, also A355525.
Row minima of A355534, which has Heinz number A325351.
The maximal version is A355535.
A001222 counts prime indices.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A342515 Number of strict partitions of n with constant (equal) first-quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 4, 5, 5, 6, 6, 8, 8, 9, 8, 9, 9, 11, 10, 13, 11, 12, 12, 13, 14, 14, 15, 15, 16, 18, 16, 17, 17, 19, 18, 20, 20, 22, 21, 21, 23, 23, 22, 24, 23, 24, 24, 27, 25, 26, 27, 27, 27, 28, 29, 31, 29, 30, 31, 32, 33, 35, 32, 35, 33, 35, 34, 35
Offset: 0

Views

Author

Gus Wiseman, Mar 19 2021

Keywords

Comments

Also the number of reversed strict partitions of n with constant (equal) first-quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3).

Examples

			The a(1) = 1 through a(15) = 9 partitions (A..F = 10..15):
  1   2   3    4    5    6    7     8    9    A    B    C    D     E     F
          21   31   32   42   43    53   54   64   65   75   76    86    87
                    41   51   52    62   63   73   74   84   85    95    96
                              61    71   72   82   83   93   94    A4    A5
                              421        81   91   92   A2   A3    B3    B4
                                                   A1   B1   B2    C2    C3
                                                             C1    D1    D2
                                                             931   842   E1
                                                                         8421
		

Crossrefs

The version for differences instead of quotients is A049980.
The non-strict ordered version is A342495.
The non-strict version is A342496.
The distinct instead of equal version is A342520.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A154402 counts partitions with adjacent parts x = 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A175342 counts compositions with equal differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]
Showing 1-10 of 16 results. Next