cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A007862 Number of triangular numbers that divide n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 5, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 4, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 5, 1, 1, 3, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Also a(n) is the total number of ways to represent n+1 as a centered polygonal number of the form km(m+1)/2+1 for k>1. - Alexander Adamchuk, Apr 26 2007
Number of oblong numbers that divide 2n. - Ray Chandler, Jun 24 2008
The number of divisors d of 2n such that d+1 is also a divisor of 2n, see first formula. - Michel Marcus, Jun 18 2015
From Gus Wiseman, May 03 2019: (Start)
Also the number of integer partitions of n forming a finite arithmetic progression with offset 0, i.e. the differences are all equal (with the last part taken to be 0). The Heinz numbers of these partitions are given by A325327. For example, the a(1) = 1 through a(12) = 3 partitions are (A = 10, B = 11, C = 12):
1 2 3 4 5 6 7 8 9 A B C
21 42 63 4321 84
321 642
(End)

Crossrefs

Programs

  • Haskell
    a007862 = sum . map a010054 . a027750_row
    -- Reinhard Zumkeller, Jul 05 2014
    
  • Mathematica
    sup=90; TriN=Array[ (#+1)(#+2)/2&, Floor[ N[ Sqrt[ sup*2 ] ] ]-1 ]; Array[ Function[n, 1+Count[ Map[ Mod[ n, # ]&, TriN ], 0 ] ], sup ]
    Table[Count[Divisors[k], ?(IntegerQ[Sqrt[8 # + 1]] &)], {k, 105}] (* _Jayanta Basu, Aug 12 2013 *)
    Table[Length[Select[IntegerPartitions[n],SameQ@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    a(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ Michel Marcus, Jun 18 2015
    
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A007862(n): return sum(1 for a, b in pairwise(divisors(n<<1)) if a+1==b)  # Chai Wah Wu, Jun 09 2025

Formula

a(n) = Sum_{d|2*n,d+1|2*n} 1.
G.f.: Sum_{k>=1} x^A000217(k)/(1-x^A000217(k)). - Jon Perry, Jul 03 2004
a(A130317(n)) = n and a(m) <> n for m < A130317(n). - Reinhard Zumkeller, May 23 2007
a(n) = A129308(2n). - Ray Chandler, Jun 24 2008
a(n) = Sum_{k=1..A000005(n)} A010054(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Dec 31 2023

Extensions

Extended by Ray Chandler, Jun 24 2008

A325367 Heinz numbers of integer partitions with distinct differences between successive parts (with the last part taken to be zero).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325324.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  28: {1,1,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[200],UnsameQ@@Differences[Append[primeptn[#],0]]&]

A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A049988.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
For example, 60 is the Heinz number of (3,2,1,1), which has differences (-1,-1,0), which are not equal, so 60 does not belong to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[primeptn[#]]&]

A325362 Heinz numbers of integer partitions whose differences (with the last part taken to be 0) are weakly increasing.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A007294.
This sequence and A025487, considered as sets, are related by the partition conjugation function A122111(.), which maps the members of either set 1:1 onto the other set. - Peter Munn, Feb 10 2022

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   19: {8}
   21: {2,4}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   30: {1,2,3}
   31: {11}
   33: {2,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],OrderedQ[Differences[Append[primeptn[#],0]]]&]

A325388 Heinz numbers of strict integer partitions with distinct differences (with the last part taken to be 0).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A320348.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   19: {8}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   31: {11}
   33: {2,5}
   34: {1,7}
   35: {3,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Differences[Append[primeptn[#],0]]&]

A307824 Heinz numbers of integer partitions whose augmented differences are all equal.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 19, 23, 29, 31, 32, 37, 41, 43, 47, 53, 55, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 119, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A129654.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
   11: {5}
   13: {6}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325390 Heinz number of the negated differences plus one of the integer partition with Heinz number n (with the last part taken to be 0).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 10, 15, 13, 18, 17, 21, 15, 24, 19, 18, 23, 30, 25, 33, 29, 36, 14, 39, 20, 42, 31, 27, 37, 48, 35, 51, 21, 36, 41, 57, 55, 60, 43, 45, 47, 66, 30, 69, 53, 72, 22, 30, 65, 78, 59, 36, 35, 84, 85, 87, 61, 54, 67, 93, 50, 96, 49, 63, 71
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).

Examples

			The Heinz number of (6,3,1) is 130, and its negated differences plus one are (4,3,2), which has Heinz number 105, so a(130) = 105.
		

Crossrefs

Number of appearances of n is A325392(n).
Positions of squarefree numbers are A325367.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Times@@Prime/@(1-Differences[Append[primeptn[n],0]]),{n,100}]

A325364 Heinz numbers of integer partitions whose differences (with the last part taken to be zero) are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 35, 37, 41, 43, 47, 49, 53, 54, 55, 59, 61, 64, 65, 67, 71, 73, 75, 77, 79, 81, 83, 89, 91, 97, 101, 103, 105, 107, 109, 113, 119, 121, 125, 127, 128, 131, 133, 137, 139
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A320509.

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],GreaterEqual@@Differences[Append[primeptn[#],0]]&]

A325407 Nonprime Heinz numbers of multiples of triangular partitions, or of finite arithmetic progressions with offset 0.

Original entry on oeis.org

1, 6, 21, 30, 65, 133, 210, 273, 319, 481, 731, 1007, 1403, 1495, 2059, 2310, 2449, 3293, 4141, 4601, 4921, 5187, 5311, 6943, 8201, 9211, 10921, 12283, 13213, 14993, 15247, 16517, 19847, 22213, 24139, 25853, 28141, 29341, 29539, 30030, 31753, 37211, 40741
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers of the form Product_{k = 1...b} prime(k * c) for some b > 1 and c > 0.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      6: {1,2}
     21: {2,4}
     30: {1,2,3}
     65: {3,6}
    133: {4,8}
    210: {1,2,3,4}
    273: {2,4,6}
    319: {5,10}
    481: {6,12}
    731: {7,14}
   1007: {8,16}
   1403: {9,18}
   1495: {3,6,9}
   2059: {10,20}
   2310: {1,2,3,4,5}
   2449: {11,22}
   3293: {12,24}
   4141: {13,26}
   4601: {14,28}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],!PrimeQ[#]&&SameQ@@Differences[Prepend[primeMS[#],0]]&]

A325460 Heinz numbers of integer partitions with strictly increasing differences (with the last part taken to be 0).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 122, 123, 127, 129, 130, 131
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A179269.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   19: {8}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   31: {11}
   33: {2,5}
   34: {1,7}
   37: {12}
   38: {1,8}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Differences[Append[primeptn[#],0]]&]
Showing 1-10 of 14 results. Next