cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007862 Number of triangular numbers that divide n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 5, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 4, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 5, 1, 1, 3, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Also a(n) is the total number of ways to represent n+1 as a centered polygonal number of the form km(m+1)/2+1 for k>1. - Alexander Adamchuk, Apr 26 2007
Number of oblong numbers that divide 2n. - Ray Chandler, Jun 24 2008
The number of divisors d of 2n such that d+1 is also a divisor of 2n, see first formula. - Michel Marcus, Jun 18 2015
From Gus Wiseman, May 03 2019: (Start)
Also the number of integer partitions of n forming a finite arithmetic progression with offset 0, i.e. the differences are all equal (with the last part taken to be 0). The Heinz numbers of these partitions are given by A325327. For example, the a(1) = 1 through a(12) = 3 partitions are (A = 10, B = 11, C = 12):
1 2 3 4 5 6 7 8 9 A B C
21 42 63 4321 84
321 642
(End)

Crossrefs

Programs

  • Haskell
    a007862 = sum . map a010054 . a027750_row
    -- Reinhard Zumkeller, Jul 05 2014
    
  • Mathematica
    sup=90; TriN=Array[ (#+1)(#+2)/2&, Floor[ N[ Sqrt[ sup*2 ] ] ]-1 ]; Array[ Function[n, 1+Count[ Map[ Mod[ n, # ]&, TriN ], 0 ] ], sup ]
    Table[Count[Divisors[k], ?(IntegerQ[Sqrt[8 # + 1]] &)], {k, 105}] (* _Jayanta Basu, Aug 12 2013 *)
    Table[Length[Select[IntegerPartitions[n],SameQ@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    a(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ Michel Marcus, Jun 18 2015
    
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A007862(n): return sum(1 for a, b in pairwise(divisors(n<<1)) if a+1==b)  # Chai Wah Wu, Jun 09 2025

Formula

a(n) = Sum_{d|2*n,d+1|2*n} 1.
G.f.: Sum_{k>=1} x^A000217(k)/(1-x^A000217(k)). - Jon Perry, Jul 03 2004
a(A130317(n)) = n and a(m) <> n for m < A130317(n). - Reinhard Zumkeller, May 23 2007
a(n) = A129308(2n). - Ray Chandler, Jun 24 2008
a(n) = Sum_{k=1..A000005(n)} A010054(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Dec 31 2023

Extensions

Extended by Ray Chandler, Jun 24 2008

A175342 Number of arithmetic progressions (where the difference between adjacent terms is either positive, 0, or negative) of positive integers that sum to n.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 8, 10, 15, 14, 12, 22, 14, 18, 28, 21, 18, 34, 20, 28, 38, 28, 24, 46, 31, 32, 48, 38, 30, 62, 32, 40, 58, 42, 46, 73, 38, 46, 68, 58, 42, 84, 44, 56, 90, 56, 48, 94, 55, 70, 90, 66, 54, 106, 70, 74, 100, 70, 60, 130, 62, 74, 118, 81, 82, 130, 68, 84, 120
Offset: 1

Views

Author

Leroy Quet, Apr 17 2010

Keywords

Examples

			From _Gus Wiseman_, May 15 2019: (Start)
The a(1) = 1 through a(8) = 10 compositions with equal differences:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (1111)  (41)     (42)      (43)       (44)
                            (11111)  (51)      (52)       (53)
                                     (123)     (61)       (62)
                                     (222)     (1111111)  (71)
                                     (321)                (2222)
                                     (111111)             (11111111)
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Differences[#]&]],{n,0,15}] (* returns a(0) = 1, Gus Wiseman, May 15 2019*)

Formula

a(n) = 2*A049988(n) - A000005(n).
G.f.: x/(1-x) + Sum_{k>=2} x^k * (1 + x^(k(k-1)/2)) / (1 - x^(k(k-1)/2)) / (1 -x^k).

Extensions

Edited and extended by Max Alekseyev, May 03 2010

A325324 Number of integer partitions of n whose differences (with the last part taken to be 0) are distinct.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 4, 7, 7, 7, 10, 15, 13, 22, 25, 26, 31, 43, 39, 55, 54, 68, 75, 98, 97, 128, 135, 165, 177, 217, 223, 277, 282, 339, 356, 438, 444, 527, 553, 667, 694, 816, 868, 1015, 1054, 1279, 1304, 1538, 1631, 1849, 1958, 2304, 2360, 2701, 2899, 3267
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The Heinz numbers of these partitions are given by A325367.

Examples

			The a(1) = 1 through a(11) = 15 partitions (A = 10, B = 11):
  (1)  (2)   (3)  (4)   (5)    (6)    (7)    (8)    (9)    (A)    (B)
       (11)       (22)  (32)   (33)   (43)   (44)   (54)   (55)   (65)
                  (31)  (41)   (51)   (52)   (53)   (72)   (64)   (74)
                        (311)  (411)  (61)   (62)   (81)   (73)   (83)
                                      (322)  (71)   (441)  (82)   (92)
                                      (331)  (332)  (522)  (91)   (A1)
                                      (511)  (611)  (711)  (433)  (443)
                                                           (622)  (533)
                                                           (631)  (551)
                                                           (811)  (632)
                                                                  (641)
                                                                  (722)
                                                                  (731)
                                                                  (911)
                                                                  (6311)
For example, (6,3,1,1) has differences (-3,-2,0,-1), which are distinct, so (6,3,1,1) is counted under a(11).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[Append[#,0]]&]],{n,0,30}]

A325367 Heinz numbers of integer partitions with distinct differences between successive parts (with the last part taken to be zero).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325324.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  28: {1,1,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[200],UnsameQ@@Differences[Append[primeptn[#],0]]&]

A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A049988.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
For example, 60 is the Heinz number of (3,2,1,1), which has differences (-1,-1,0), which are not equal, so 60 does not belong to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[primeptn[#]]&]

A325327 Heinz numbers of multiples of triangular partitions, or finite arithmetic progressions with offset 0.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers of the form Product_{k = 1..b} prime(k * c) for some b >= 0 and c > 0.
The enumeration of these partitions by sum is given by A007862.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   21: {2,4}
   23: {9}
   29: {10}
   30: {1,2,3}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[Append[primeptn[#],0]]&]

A325461 Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A320510.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   35: {3,4}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&]

A068322 Number of arithmetic progressions of positive odd integers, strictly increasing with sum n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 3, 3, 5, 1, 4, 1, 5, 4, 5, 1, 7, 2, 6, 5, 8, 1, 7, 1, 9, 6, 8, 2, 11, 1, 9, 7, 12, 1, 10, 1, 12, 10, 11, 1, 15, 2, 12, 9, 15, 1, 13, 3, 16, 10, 14, 1, 18, 1, 15, 12, 20, 4, 17, 1, 19, 12, 17, 1, 22, 1, 18, 16, 22, 2, 20, 1, 24, 15, 20, 1, 25, 5, 21, 15, 26
Offset: 1

Views

Author

Naohiro Nomoto, Feb 27 2002

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(12) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=12: 1+11, 3+9, and 5+7.
a(13) = 1 because we have only the following arithmetic progressions of odd numbers, strictly increasing with sum n=13: 13.
a(14) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=14: 1+13, 3+11, and 5+9.
a(15) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=15: 15, 3+5+7, and 1+5+9.
(End)
		

Crossrefs

Formula

From Petros Hadjicostas, Oct 01 2019: (Start)
a(n) = A068324(n) - A001227(n) + (1/2) * (1 - (-1)^n).
G.f.: x/(1 - x^2) + Sum_{m >= 2} x^(m^2)/((1 - x^(2*m)) * (1 - x^(m*(m-1)))).
(End)

A068324 Number of nondecreasing arithmetic progressions of positive odd integers with sum n.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 4, 4, 2, 5, 2, 5, 6, 6, 2, 7, 2, 7, 7, 7, 2, 9, 4, 8, 8, 10, 2, 11, 2, 10, 9, 10, 5, 14, 2, 11, 10, 14, 2, 14, 2, 14, 15, 13, 2, 17, 4, 15, 12, 17, 2, 17, 6, 18, 13, 16, 2, 22, 2, 17, 17, 21, 7, 21, 2, 21, 15, 21, 2, 25, 2, 20, 21, 24, 5, 24, 2, 26, 19, 22, 2, 29, 8
Offset: 1

Views

Author

Naohiro Nomoto, Feb 27 2002

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(6) = 3 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=6: 1+5, 3+3, and 1+1+1+1+1+1.
a(7) = 2 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=7: 7 and 1+1+1+1+1+1+1.
a(8) = 3 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=8: 1+7, 3+5, and 1+1+1+1+1+1+1+1.
(End)
		

Crossrefs

Formula

From Petros Hadjicostas, Oct 01 2019: (Start)
a(n) = A068322(n) + A001227(n) - (1/2) * (1 - (-1)^n).
G.f.: x/(1 - x^2) + Sum_{m >= 2} x^m/((1 - x^(2*m)) * (1 - x^(m*(m-1)))).
(End)

Extensions

Extended and edited by John W. Layman, Mar 15 2002

A325392 Number of permutations of the multiset of prime factors of n whose first part is not 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 0, 2, 1, 2, 3, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 6, 1, 1, 3, 0, 2, 4, 1, 1, 2, 4, 1, 4, 1, 1, 3, 1, 2, 4, 1, 1, 1, 1, 1, 6, 2, 1, 2, 1, 1, 9, 2, 1, 2, 1, 2, 1, 1, 2, 3, 3, 1, 4, 1, 1, 6
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Examples

			The a(90) = 9 permutations of {2,3,3,5} not starting with 2:
  3 2 3 5
  3 2 5 3
  3 3 2 5
  3 3 5 2
  3 5 2 3
  3 5 3 2
  5 2 3 3
  5 3 2 3
  5 3 3 2
		

Crossrefs

Number of times n appears in A325390.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],#=={}||First[#]>1&]],{n,100}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From code in A008480
    A325392(n) = if(n%2, A008480(n), A008480(n)-A008480(n/2)); \\ Antti Karttunen, Dec 06 2021

Formula

If n is odd, a(n) = A008480(n). If n is even, a(n) = A008480(n) - A008480(n/2).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021
Showing 1-10 of 11 results. Next