cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049980 a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 4, 7, 6, 6, 9, 7, 8, 13, 9, 9, 15, 10, 12, 18, 13, 12, 20, 15, 15, 23, 17, 15, 28, 16, 18, 28, 20, 22, 33, 19, 22, 33, 26, 21, 39, 22, 26, 43, 27, 24, 43, 27, 33, 44, 31, 27, 50, 34, 34, 49, 34, 30, 60, 31, 36, 57, 38, 40
Offset: 1

Views

Author

Keywords

Comments

We need to find the number of pairs of positive integers (b, w) so that there is a positive integer m such that m*b + m*(m-1)*w/2 = n. - Petros Hadjicostas, Sep 27 2019

Examples

			a(6) = 4 because we have the following strictly increasing arithmetic progressions of positive integers adding up to n = 6: 6, 1+5, 2+4, and 1+2+3. - _Petros Hadjicostas_, Sep 27 2019
		

Crossrefs

Formula

Conjecture: a(n) = 1 + Sum_{m|n, m odd > 1} floor(2 * (n - m)/(m* (m - 1))) + Sum_{m|n} floor((n - m * (5 - (-1)^(n/m))/2 + m^2 * (1 - (-1)^(n/m)))/(2*m * (2*m - 1))). - Petros Hadjicostas, Sep 27 2019
G.f.: x/(1-x) + Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = x/(1-x) + Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019

A049981 a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum <= n.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 17, 21, 28, 34, 40, 49, 56, 64, 77, 86, 95, 110, 120, 132, 150, 163, 175, 195, 210, 225, 248, 265, 280, 308, 324, 342, 370, 390, 412, 445, 464, 486, 519, 545, 566, 605, 627, 653, 696, 723, 747, 790, 817, 850, 894, 925, 952, 1002, 1036, 1070, 1119, 1153, 1183, 1243, 1274, 1310
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049980(k) = n + Sum_{k = 1..n} A049982(k).
G.f.: (g.f. of A049980)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A068322 Number of arithmetic progressions of positive odd integers, strictly increasing with sum n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 1, 3, 3, 5, 1, 4, 1, 5, 4, 5, 1, 7, 2, 6, 5, 8, 1, 7, 1, 9, 6, 8, 2, 11, 1, 9, 7, 12, 1, 10, 1, 12, 10, 11, 1, 15, 2, 12, 9, 15, 1, 13, 3, 16, 10, 14, 1, 18, 1, 15, 12, 20, 4, 17, 1, 19, 12, 17, 1, 22, 1, 18, 16, 22, 2, 20, 1, 24, 15, 20, 1, 25, 5, 21, 15, 26
Offset: 1

Views

Author

Naohiro Nomoto, Feb 27 2002

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(12) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=12: 1+11, 3+9, and 5+7.
a(13) = 1 because we have only the following arithmetic progressions of odd numbers, strictly increasing with sum n=13: 13.
a(14) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=14: 1+13, 3+11, and 5+9.
a(15) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=15: 15, 3+5+7, and 1+5+9.
(End)
		

Crossrefs

Formula

From Petros Hadjicostas, Oct 01 2019: (Start)
a(n) = A068324(n) - A001227(n) + (1/2) * (1 - (-1)^n).
G.f.: x/(1 - x^2) + Sum_{m >= 2} x^(m^2)/((1 - x^(2*m)) * (1 - x^(m*(m-1)))).
(End)
Showing 1-3 of 3 results.