cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A325367 Heinz numbers of integer partitions with distinct differences between successive parts (with the last part taken to be zero).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325324.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  28: {1,1,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[200],UnsameQ@@Differences[Append[primeptn[#],0]]&]

A325388 Heinz numbers of strict integer partitions with distinct differences (with the last part taken to be 0).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A320348.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   19: {8}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   31: {11}
   33: {2,5}
   34: {1,7}
   35: {3,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Differences[Append[primeptn[#],0]]&]

A325390 Heinz number of the negated differences plus one of the integer partition with Heinz number n (with the last part taken to be 0).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 10, 15, 13, 18, 17, 21, 15, 24, 19, 18, 23, 30, 25, 33, 29, 36, 14, 39, 20, 42, 31, 27, 37, 48, 35, 51, 21, 36, 41, 57, 55, 60, 43, 45, 47, 66, 30, 69, 53, 72, 22, 30, 65, 78, 59, 36, 35, 84, 85, 87, 61, 54, 67, 93, 50, 96, 49, 63, 71
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).

Examples

			The Heinz number of (6,3,1) is 130, and its negated differences plus one are (4,3,2), which has Heinz number 105, so a(130) = 105.
		

Crossrefs

Number of appearances of n is A325392(n).
Positions of squarefree numbers are A325367.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Times@@Prime/@(1-Differences[Append[primeptn[n],0]]),{n,100}]

A325457 Heinz numbers of integer partitions with strictly decreasing differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A320470.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Differences[primeptn[#]]&]

A325460 Heinz numbers of integer partitions with strictly increasing differences (with the last part taken to be 0).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 122, 123, 127, 129, 130, 131
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A179269.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   19: {8}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   31: {11}
   33: {2,5}
   34: {1,7}
   37: {12}
   38: {1,8}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Differences[Append[primeptn[#],0]]&]

A320510 Number of partitions of n such that the successive differences of consecutive parts are decreasing, and first difference < first part.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 3, 4, 3, 4, 6, 3, 5, 6, 5, 6, 9, 5, 7, 9, 8, 8, 11, 8, 11, 13, 10, 12, 15, 11, 15, 16, 14, 16, 21, 15, 20, 22, 18, 21, 26, 21, 24, 28, 25, 28, 33, 26, 32, 34, 33, 36, 40, 34, 40, 45, 40, 43, 49, 43, 52, 54, 49, 54, 62, 56, 62, 64, 61, 67, 75, 66
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check visually if written in ascending order.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1). Then a(n) is the number of integer partitions of n whose differences (with the last part taken to be 0) are strictly decreasing. The Heinz numbers of these partitions are given by A325461. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly decreasing, which is the author's interpretation. - Gus Wiseman, May 04 2019

Examples

			There are a(29) = 13 such partitions of 29:
01: [29]
02: [10, 19]
03: [11, 18]
04: [12, 17]
05: [13, 16]
06: [14, 15]
07: [6, 10, 13]
08: [6, 11, 12]
09: [7, 10, 12]
10: [7, 11, 11]
11: [8, 10, 11]
12: [9, 10, 10]
13: [4, 7, 9, 9]
There are a(30) = 10 such partitions of 30:
01: [30]
02: [11, 19]
03: [12, 18]
04: [13, 17]
05: [14, 16]
06: [15, 15]
07: [6, 11, 13]
08: [7, 11, 12]
09: [8, 11, 11]
10: [4, 7, 9, 10]
		

Crossrefs

Cf. A320385 (distinct parts, decreasing, and first difference < first part).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Greater@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0
      }
      cnt
    end
    def A320510(n)
      (0..n).map{|i| f(i)}
    end
    p A320510(50)

A325392 Number of permutations of the multiset of prime factors of n whose first part is not 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 0, 2, 1, 2, 3, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 6, 1, 1, 3, 0, 2, 4, 1, 1, 2, 4, 1, 4, 1, 1, 3, 1, 2, 4, 1, 1, 1, 1, 1, 6, 2, 1, 2, 1, 1, 9, 2, 1, 2, 1, 2, 1, 1, 2, 3, 3, 1, 4, 1, 1, 6
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Examples

			The a(90) = 9 permutations of {2,3,3,5} not starting with 2:
  3 2 3 5
  3 2 5 3
  3 3 2 5
  3 3 5 2
  3 5 2 3
  3 5 3 2
  5 2 3 3
  5 3 2 3
  5 3 3 2
		

Crossrefs

Number of times n appears in A325390.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],#=={}||First[#]>1&]],{n,100}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From code in A008480
    A325392(n) = if(n%2, A008480(n), A008480(n)-A008480(n/2)); \\ Antti Karttunen, Dec 06 2021

Formula

If n is odd, a(n) = A008480(n). If n is even, a(n) = A008480(n) - A008480(n/2).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021
Showing 1-7 of 7 results.