A325368
Heinz numbers of integer partitions with distinct differences between successive parts.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
8: {1,1,1}
16: {1,1,1,1}
24: {1,1,1,2}
27: {2,2,2}
30: {1,2,3}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
60: {1,1,2,3}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
81: {2,2,2,2}
88: {1,1,1,5}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
100: {1,1,3,3}
Cf.
A056239,
A112798,
A130091,
A240026,
A325325,
A325328,
A325352,
A325360,
A325361,
A325366,
A325367,
A325405,
A325456,
A325457.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],UnsameQ@@Differences[primeptn[#]]&]
A325361
Heinz numbers of integer partitions whose differences are weakly decreasing.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1
Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
12: {1,1,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
52: {1,1,6}
56: {1,1,1,4}
60: {1,1,2,3}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
72: {1,1,1,2,2}
76: {1,1,8}
78: {1,2,6}
80: {1,1,1,1,3}
Cf.
A056239,
A112798,
A320466,
A320509,
A325328,
A325352,
A325456,
A325457,
A325360,
A325361,
A325364,
A320466,
A325368,
A325389.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],GreaterEqual@@Differences[primeptn[#]]&]
A325396
Heinz numbers of integer partitions whose augmented differences are strictly decreasing.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
34: {1,7}
Cf.
A056239,
A093641,
A112798,
A320466,
A325351,
A325358,
A325366,
A325389,
A325393,
A325394,
A325395,
A325457.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
aug[y_]:=Table[If[i
A320470
Number of partitions of n such that the successive differences of consecutive parts are strictly decreasing.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 4, 5, 7, 6, 8, 10, 10, 11, 14, 13, 16, 19, 18, 20, 25, 23, 27, 31, 30, 34, 39, 37, 42, 48, 47, 50, 59, 56, 63, 70, 68, 74, 83, 82, 89, 97, 97, 104, 116, 113, 123, 133, 133, 142, 155, 153, 166, 178, 178, 189, 204, 204, 218, 232, 235, 247, 265, 265, 283, 299
Offset: 0
There are a(10) = 8 such partitions of 10:
01: [10]
02: [1, 9]
03: [2, 8]
04: [3, 7]
05: [4, 6]
06: [5, 5]
07: [1, 4, 5]
08: [2, 4, 4]
There are a(11) = 10 such partitions of 11:
01: [11]
02: [1, 10]
03: [2, 9]
04: [3, 8]
05: [4, 7]
06: [5, 6]
07: [1, 4, 6]
08: [1, 5, 5]
09: [2, 4, 5]
10: [3, 4, 4]
-
Table[Length[Select[IntegerPartitions[n],Greater@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
-
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def f(n)
return 1 if n == 0
cnt = 0
partition(n, 1, n).each{|ary|
ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0
}
cnt
end
def A320470(n)
(0..n).map{|i| f(i)}
end
p A320470(50)
A325548
Number of compositions of n with strictly decreasing differences.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 10, 13, 19, 23, 29, 38, 46, 55, 69, 80, 96, 115, 132, 154, 183, 207, 238, 276, 314, 356, 405, 455, 513, 579, 647, 724, 809, 897, 998, 1107, 1225, 1350, 1486, 1639, 1805, 1973, 2166, 2374, 2586, 2824, 3084, 3346, 3646, 3964, 4286, 4655, 5047
Offset: 0
The a(1) = 1 through a(8) = 19 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (12) (13) (14) (15) (16) (17)
(21) (22) (23) (24) (25) (26)
(31) (32) (33) (34) (35)
(121) (41) (42) (43) (44)
(122) (51) (52) (53)
(131) (132) (61) (62)
(221) (141) (133) (71)
(231) (142) (134)
(1221) (151) (143)
(232) (152)
(241) (161)
(331) (233)
(242)
(251)
(332)
(341)
(431)
(1331)
Cf.
A011782,
A000740,
A008965,
A070211,
A175342,
A179254,
A320470,
A325457,
A325545,
A325546,
A325547,
A325552,
A325557.
-
b:= proc(n, l, d) option remember; `if`(n=0, 1, add(`if`(l=0 or
j-l b(n, 0$2):
seq(a(n), n=0..52); # Alois P. Heinz, Jan 27 2024
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Greater@@Differences[#]&]],{n,0,15}]
A325393
Number of integer partitions of n whose k-th differences are strictly decreasing for all k >= 0.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 7, 9, 11, 10, 12, 15, 13, 16, 19, 18, 20, 24, 22, 26, 29, 28, 31, 37, 33, 38, 43, 42, 44, 52, 48, 55, 59, 58, 62, 72, 65, 74, 80, 80, 82, 94, 88, 99, 103, 104, 108, 123, 114, 126, 133, 135, 137, 155, 145, 161, 166, 169, 174
Offset: 0
The a(1) = 1 through a(9) = 5 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(41) (51) (52) (62) (63)
(61) (71) (72)
(431) (81)
Cf.
A049988,
A320466,
A325353,
A325354,
A325358,
A325391,
A325396,
A325399,
A325404,
A325406,
A325457,
A325468.
-
Table[Length[Select[IntegerPartitions[n],And@@Table[Greater@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]
A325399
Heinz numbers of integer partitions whose k-th differences are strictly decreasing for all k >= 0.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
Cf.
A056239,
A112798,
A320466,
A320470,
A325358,
A325391,
A325393,
A325396,
A325397,
A325398,
A325400,
A325405,
A325457,
A325467.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],And@@Table[Greater@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]
A325456
Heinz numbers of integer partitions with strictly increasing differences.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
6: {1,2}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
12: {1,1,2}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
Cf.
A056239,
A112798,
A179269,
A240026,
A240027,
A325328,
A325352,
A325360,
A325361,
A325368,
A325395,
A325398,
A325457,
A325460.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],Less@@Differences[primeptn[#]]&]
A325461
Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
15: {2,3}
17: {7}
19: {8}
23: {9}
25: {3,3}
29: {10}
31: {11}
35: {3,4}
37: {12}
41: {13}
43: {14}
Cf.
A056239,
A112798,
A320510,
A325327,
A325362,
A325364,
A325367,
A325388,
A325390,
A325396,
A325399,
A325407,
A325457,
A325460.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&]
A342525
Heinz numbers of integer partitions with strictly decreasing first quotients.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1
The prime indices of 150 are {1,2,3,3}, with first quotients (2,3/2,1), so 150 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
8: {1,1,1}
12: {1,1,2}
16: {1,1,1,1}
20: {1,1,3}
24: {1,1,1,2}
27: {2,2,2}
28: {1,1,4}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
For multiplicities (prime signature) instead of quotients we have
A304686.
For differences instead of quotients we have
A325457 (count:
A320470).
The version counting strict divisor chains is
A342086.
The strictly increasing version is
A342524.
The weakly decreasing version is
A342526.
A167865 counts strict chains of divisors > 1 summing to n.
A318991/
A318992 rank reversed partitions with/without integer quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.
Cf.
A056239,
A067824,
A112798,
A124010,
A130091,
A169594,
A253249,
A325351,
A325352,
A325405,
A334997,
A342530.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],Greater@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
Showing 1-10 of 10 results.
Comments