cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A325351 Heinz number of the augmented differences of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 6, 10, 11, 12, 13, 14, 9, 16, 17, 12, 19, 20, 15, 22, 23, 24, 10, 26, 12, 28, 29, 18, 31, 32, 21, 34, 15, 24, 37, 38, 33, 40, 41, 30, 43, 44, 18, 46, 47, 48, 14, 20, 39, 52, 53, 24, 25, 56, 51, 58, 59, 36, 61, 62, 30, 64, 35, 42, 67, 68, 57, 30, 71, 48, 73, 74, 18, 76, 21, 66, 79, 80, 24, 82, 83, 60, 55, 86, 69, 88, 89, 36, 35
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Note that aug preserves length so this sequence preserves omega (number of prime factors counted with multiplicity).

Examples

			The partition (3,2,2,1) with Heinz number 90 has augmented differences (2,1,2,1) with Heinz number 36, so a(90) = 36.
		

Crossrefs

Number of appearances of n is A008480(n).

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
  • PARI
    augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
    A325351(n) = factorback(apply(prime,augdiffs(n))); \\ Antti Karttunen, Nov 16 2019

Extensions

More terms from Antti Karttunen, Nov 16 2019

A325366 Heinz numbers of integer partitions whose augmented differences are distinct.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325349.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   19: {8}
   21: {2,4}
   22: {1,5}
   23: {9}
   25: {3,3}
   26: {1,6}
   29: {10}
   31: {11}
		

Crossrefs

Positions of squarefree numbers in A325351.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325394 Heinz numbers of integer partitions whose augmented differences are weakly increasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 64, 67, 71, 73, 75, 77, 79, 81, 83, 89, 91, 97, 101, 103, 105, 107, 109, 113, 119, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325356.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A307824 Heinz numbers of integer partitions whose augmented differences are all equal.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 19, 23, 29, 31, 32, 37, 41, 43, 47, 53, 55, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 119, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A129654.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
   11: {5}
   13: {6}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325389 Heinz numbers of integer partitions whose augmented differences are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325350.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325395 Heinz numbers of integer partitions whose augmented differences are strictly increasing.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209, 211, 221
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325357.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   35: {3,4}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325355 One plus the number of steps applying A325351 (Heinz number of augmented differences of reversed prime indices) to reach a fixed point.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 5, 1, 4, 2, 1, 1, 6, 1, 1, 4, 1, 1, 3, 1, 1, 1, 2, 2, 7, 1, 1, 2, 3, 1, 8, 1, 1, 3, 1, 1, 4, 1, 5, 5, 1, 1, 9, 4, 1, 2, 1, 1, 3, 1, 5, 6, 1, 1, 2, 1, 1, 4, 4, 1, 10, 1, 1, 3, 5, 1, 11, 1, 6, 1, 1, 2, 5, 2, 1, 7, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The fixed points of A325351 are the Heinz numbers of hooks A093641.

Examples

			Repeatedly applying A325351 starting with 78 gives 78 -> 66 -> 42 -> 30 -> 18 -> 12, and 12 is a fixed point, so a(78) = 6.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
  • PARI
    augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
    A325351(n) = factorback(apply(prime,augdiffs(n)));
    A325355(n) = { my(u=A325351(n)); if(u==n,1,1+A325355(u)); }; \\ Antti Karttunen, Nov 16 2019

Extensions

More terms from Antti Karttunen, Nov 16 2019

A325358 Number of integer partitions of n whose augmented differences are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 7, 9, 10, 11, 13, 14, 15, 18, 20, 21, 24, 26, 28, 33, 36, 38, 43, 46, 49, 56, 60, 63, 71, 76, 80, 90, 96, 100, 112, 120, 125, 139, 149, 155, 171, 183, 190, 208, 223, 232, 252, 269, 280, 304, 325, 338, 364, 387, 403
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325396.

Examples

			The a(1) = 1 through a(11) = 6 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (10)   (11)
            (21)  (31)  (41)  (42)  (52)   (62)   (63)   (73)   (83)
                              (51)  (61)   (71)   (72)   (82)   (92)
                                    (421)  (521)  (81)   (91)   (101)
                                                  (621)  (631)  (731)
                                                         (721)  (821)
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A325393 Number of integer partitions of n whose k-th differences are strictly decreasing for all k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 7, 9, 11, 10, 12, 15, 13, 16, 19, 18, 20, 24, 22, 26, 29, 28, 31, 37, 33, 38, 43, 42, 44, 52, 48, 55, 59, 58, 62, 72, 65, 74, 80, 80, 82, 94, 88, 99, 103, 104, 108, 123, 114, 126, 133, 135, 137, 155, 145, 161, 166, 169, 174
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325399.

Examples

			The a(1) = 1 through a(9) = 5 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)   (8)    (9)
            (21)  (31)  (32)  (42)  (43)  (53)   (54)
                        (41)  (51)  (52)  (62)   (63)
                                    (61)  (71)   (72)
                                          (431)  (81)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[Greater@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]

A325457 Heinz numbers of integer partitions with strictly decreasing differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A320470.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Differences[primeptn[#]]&]
Showing 1-10 of 13 results. Next