cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A325351 Heinz number of the augmented differences of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 6, 10, 11, 12, 13, 14, 9, 16, 17, 12, 19, 20, 15, 22, 23, 24, 10, 26, 12, 28, 29, 18, 31, 32, 21, 34, 15, 24, 37, 38, 33, 40, 41, 30, 43, 44, 18, 46, 47, 48, 14, 20, 39, 52, 53, 24, 25, 56, 51, 58, 59, 36, 61, 62, 30, 64, 35, 42, 67, 68, 57, 30, 71, 48, 73, 74, 18, 76, 21, 66, 79, 80, 24, 82, 83, 60, 55, 86, 69, 88, 89, 36, 35
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Note that aug preserves length so this sequence preserves omega (number of prime factors counted with multiplicity).

Examples

			The partition (3,2,2,1) with Heinz number 90 has augmented differences (2,1,2,1) with Heinz number 36, so a(90) = 36.
		

Crossrefs

Number of appearances of n is A008480(n).

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
  • PARI
    augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
    A325351(n) = factorback(apply(prime,augdiffs(n))); \\ Antti Karttunen, Nov 16 2019

Extensions

More terms from Antti Karttunen, Nov 16 2019

A355536 Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime, row n is empty.

Original entry on oeis.org

0, 1, 0, 0, 0, 2, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 2, 2, 4, 0, 0, 1, 0, 5, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 3, 6, 1, 0, 1, 0, 7, 4, 0, 0, 2, 1, 2, 0, 4, 0, 1, 8, 0, 0, 0, 1, 0, 2, 0, 5, 0, 5, 1, 0, 0, 2, 0, 0, 3, 6, 9, 0, 1, 1, 10, 0, 2, 0, 0, 0, 0, 0, 3, 1, 3, 0, 6
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The version where zero is prepended to the prime indices is A287352.
One could argue that row n = 1 is empty, but adding it changes only the offset, not the data.

Examples

			Triangle begins (showing n, prime indices, differences*):
   2:    (1)       .
   3:    (2)       .
   4:   (1,1)      0
   5:    (3)       .
   6:   (1,2)      1
   7:    (4)       .
   8:  (1,1,1)    0 0
   9:   (2,2)      0
  10:   (1,3)      2
  11:    (5)       .
  12:  (1,1,2)    0 1
  13:    (6)       .
  14:   (1,4)      3
  15:   (2,3)      1
  16: (1,1,1,1)  0 0 0
		

Crossrefs

Row-lengths are A001222 minus one.
The prime indices are A112798, sum A056239.
Row-sums are A243055.
Constant rows have indices A325328.
The Heinz numbers of the rows plus one are A325352.
Strict rows have indices A325368.
Row minima are A355524.
Row maxima are A286470, also A355526.
An adjusted version is A358169, reverse A355534.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Differences[primeMS[n]],{n,2,100}]

A325366 Heinz numbers of integer partitions whose augmented differences are distinct.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325349.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   19: {8}
   21: {2,4}
   22: {1,5}
   23: {9}
   25: {3,3}
   26: {1,6}
   29: {10}
   31: {11}
		

Crossrefs

Positions of squarefree numbers in A325351.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325362 Heinz numbers of integer partitions whose differences (with the last part taken to be 0) are weakly increasing.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A007294.
This sequence and A025487, considered as sets, are related by the partition conjugation function A122111(.), which maps the members of either set 1:1 onto the other set. - Peter Munn, Feb 10 2022

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   19: {8}
   21: {2,4}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   30: {1,2,3}
   31: {11}
   33: {2,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],OrderedQ[Differences[Append[primeptn[#],0]]]&]

A355534 Irregular triangle read by rows where row n lists the augmented differences of the reversed prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 1, 1, 1, 1, 2, 3, 1, 5, 2, 1, 1, 6, 4, 1, 2, 2, 1, 1, 1, 1, 7, 1, 2, 1, 8, 3, 1, 1, 3, 2, 5, 1, 9, 2, 1, 1, 1, 1, 3, 6, 1, 1, 1, 2, 4, 1, 1, 10, 2, 2, 1, 11, 1, 1, 1, 1, 1, 4, 2, 7, 1, 2, 3, 1, 2, 1, 1, 12, 8, 1, 5, 2, 3, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
One could argue that row n = 1 is empty, but adding it changes only the offset, not the data.

Examples

			Triangle begins:
   2: 1
   3: 2
   4: 1 1
   5: 3
   6: 2 1
   7: 4
   8: 1 1 1
   9: 1 2
  10: 3 1
  11: 5
  12: 2 1 1
  13: 6
  14: 4 1
  15: 2 2
  16: 1 1 1 1
For example, the reversed prime indices of 825 are (5,3,3,2), which have augmented differences (3,1,2,2).
		

Crossrefs

Crossrefs found in the link are not repeated here.
Row-lengths are A001222.
Row-sums are A252464
Other similar triangles are A287352, A091602.
Constant rows have indices A307824.
The Heinz numbers of the rows are A325351.
Strict rows have indices A325366.
Row minima are A355531, non-augmented A355524, also A355525.
Row maxima are A355535, non-augmented A286470, also A355526.
The non-augmented version is A355536, also A355533.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A325360 Heinz numbers of integer partitions whose differences are weakly increasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A240026.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
   18: {1,2,2}
   36: {1,1,2,2}
   50: {1,3,3}
   54: {1,2,2,2}
   70: {1,3,4}
   72: {1,1,1,2,2}
   75: {2,3,3}
   90: {1,2,2,3}
   98: {1,4,4}
  100: {1,1,3,3}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],OrderedQ[Differences[primeptn[#]]]&]

A307824 Heinz numbers of integer partitions whose augmented differences are all equal.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 19, 23, 29, 31, 32, 37, 41, 43, 47, 53, 55, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 119, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A129654.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
   11: {5}
   13: {6}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325356 Number of integer partitions of n whose augmented differences are weakly increasing.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 6, 5, 5, 6, 8, 6, 10, 9, 8, 10, 13, 10, 15, 14, 13, 15, 21, 15, 19, 21, 20, 25, 25, 20, 31, 30, 30, 32, 35, 28, 40, 44, 36, 42, 50, 43, 54, 53, 49, 57, 67, 58, 68, 66, 66, 78, 84, 71, 86, 92, 82, 99, 109
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The Heinz numbers of these partitions are given by A325394.

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (11111)  (222)     (1111111)  (53)
                                     (111111)             (332)
                                                          (2222)
                                                          (11111111)
For example, the augmented differences of (6,6,5,3) are (1,2,3,3), which are weakly increasing, so (6,6,5,3) is counted under a(20).
		

Crossrefs

Programs

  • Mathematica
    aug[y_]:=Table[If[i
    				

A325389 Heinz numbers of integer partitions whose augmented differences are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 76, 78, 79, 80, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325350.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				

A325395 Heinz numbers of integer partitions whose augmented differences are strictly increasing.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209, 211, 221
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325357.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   35: {3,4}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
Showing 1-10 of 19 results. Next