A320348
Number of partition into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a_3, ... , a_{m-1} - a_m, a_m are different.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 9, 7, 13, 12, 13, 16, 22, 17, 28, 28, 31, 36, 50, 45, 63, 62, 74, 78, 102, 92, 123, 123, 146, 148, 191, 181, 228, 233, 280, 283, 348, 350, 420, 437, 518, 523, 616, 641, 727, 774, 884, 911, 1038, 1102, 1240, 1292, 1463, 1530, 1715, 1861, 2002
Offset: 1
n = 9
[9] ********* a_1 = 9.
ooooooooo
------------------------------------
[8, 1] * a_2 = 1.
*******o a_1 - a_2 = 7.
oooooooo
------------------------------------
[7, 2] ** a_2 = 2.
*****oo a_1 - a_2 = 5.
ooooooo
------------------------------------
[5, 4] **** a_2 = 4.
*oooo a_1 - a_2 = 1.
ooooo
------------------------------------
a(9) = 4.
From _Gus Wiseman_, May 04 2019: (Start)
The a(1) = 1 through a(11) = 9 strict partitions with distinct differences (where the last part is taken to be 0) are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A325388.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B)
(31) (32) (51) (43) (53) (54) (64) (65)
(41) (52) (62) (72) (73) (74)
(61) (71) (81) (82) (83)
(91) (92)
(631) (A1)
(632)
(641)
(731)
The a(1) = 1 through a(10) = 6 partitions covering an initial interval of positive integers with distinct multiplicities are the following. The Heinz numbers of these partitions are given by A325326.
1 11 111 211 221 21111 2221 22211 22221 222211
1111 2111 111111 22111 221111 2211111 322111
11111 211111 2111111 21111111 2221111
1111111 11111111 111111111 22111111
211111111
1111111111
The a(1) = 1 through a(10) = 6 partitions whose multiplicities cover an initial interval of positive integers and are distinct are the following (A = 10). The Heinz numbers of these partitions are given by A325337.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A)
(211) (221) (411) (322) (332) (441) (433)
(311) (331) (422) (522) (442)
(511) (611) (711) (622)
(811)
(322111)
(End)
Cf.
A007294,
A007862,
A048767,
A098859,
A179269,
A320509,
A320510,
A325324,
A325325,
A325349,
A325367,
A325404,
A325468.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[Append[#,0]]&]],{n,30}] (* Gus Wiseman, May 04 2019 *)
A320509
Number of partitions of n such that the successive differences of consecutive parts are nonincreasing, and first difference <= first part.
Original entry on oeis.org
1, 1, 2, 3, 3, 4, 6, 4, 6, 8, 7, 8, 11, 7, 12, 14, 10, 13, 19, 12, 18, 21, 16, 19, 27, 19, 25, 30, 25, 30, 37, 25, 35, 40, 35, 42, 49, 35, 49, 56, 46, 54, 66, 50, 65, 72, 60, 70, 83, 68, 84, 90, 80, 94, 110, 86, 107, 116, 98, 119, 137, 111, 134, 146, 130, 148, 165, 141, 169
Offset: 0
There are a(11) = 8 such partitions of 11:
01: [11]
02: [4, 7]
03: [5, 6]
04: [2, 4, 5]
05: [3, 4, 4]
06: [2, 3, 3, 3]
07: [1, 2, 2, 2, 2, 2]
08: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
There are a(12) = 11 such partitions of 12:
01: [12]
02: [4, 8]
03: [5, 7]
04: [6, 6]
05: [2, 4, 6]
06: [3, 4, 5]
07: [4, 4, 4]
08: [3, 3, 3, 3]
09: [1, 2, 3, 3, 3]
10: [2, 2, 2, 2, 2, 2]
11: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Cf.
A320387 (distinct parts, nonincreasing, and first difference <= first part).
-
Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
-
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def f(n)
return 1 if n == 0
cnt = 0
partition(n, 1, n).each{|ary|
ary << 0
ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
cnt += 1 if ary0.sort == ary0
}
cnt
end
def A320509(n)
(0..n).map{|i| f(i)}
end
p A320509(50)
A179269
Number of partitions of n into distinct parts such that the successive differences of consecutive parts are increasing, and first difference > first part.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 10, 10, 10, 13, 14, 14, 18, 19, 19, 23, 25, 25, 30, 32, 33, 38, 41, 42, 48, 52, 54, 60, 65, 67, 75, 81, 84, 92, 99, 103, 113, 121, 126, 136, 147, 153, 165, 177, 184, 197, 213, 221, 236, 253, 264, 280, 301, 313, 331, 355, 371, 390, 418, 435, 458
Offset: 0
a(10) = 5 as there are 5 such partitions of 10: 1 + 3 + 6 = 1 + 9 = 2 + 8 = 3 + 7 = 10.
a(10) = 5 as there are 5 such partitions of 10: 10, 8 + 1 + 1, 6 + 2 + 2, 4 + 3 + 3, 3 + 2 + 2 + 1 + 1 + 1 (second definition).
From _Gus Wiseman_, May 04 2019: (Start)
The a(3) = 1 through a(13) = 7 partitions whose differences are strictly increasing (with the last part taken to be 0) are the following (A = 10, B = 11, C = 12, D = 13). The Heinz numbers of these partitions are given by A325460.
(3) (4) (5) (6) (7) (8) (9) (A) (B) (C) (D)
(31) (41) (51) (52) (62) (72) (73) (83) (93) (94)
(61) (71) (81) (82) (92) (A2) (A3)
(91) (A1) (B1) (B2)
(631) (731) (831) (C1)
(841)
(931)
The a(3) = 1 through a(11) = 5 partitions whose multiplicities form an initial interval of positive integers are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A307895.
(3) (4) (5) (6) (7) (8) (9) (A) (B)
(211) (311) (411) (322) (422) (522) (433) (533)
(511) (611) (711) (622) (722)
(811) (911)
(322111) (422111)
(End)
-
Table[Length@
Select[IntegerPartitions[n],
And @@ Equal[Range[Length[Split[#]]], Length /@ Split[#]] &], {n,
0, 40}] (* Olivier Gérard, Jul 28 2017 *)
Table[Length[Select[IntegerPartitions[n],Less@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
-
R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, L[w-1][i-k*t]))); Mat(L)}
seq(n)={my(M=R(n)); concat([1], vector(n, i, vecsum(M[i,])))} \\ Andrew Howroyd, Aug 27 2019
-
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
end
def f(n)
return 1 if n == 0
cnt = 0
partition(n, 1, n).each{|ary|
ary << 0
ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
}
cnt
end
def A179269(n)
(0..n).map{|i| f(i)}
end
p A179269(50) # Seiichi Manyama, Oct 12 2018
-
def A179269(n):
has_increasing_diffs = lambda x: min(differences(x,2)) >= 1
special = lambda x: (x[1]-x[0]) > x[0]
allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_increasing_diffs(x))
return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
# D. S. McNeil, Jan 06 2011
A320470
Number of partitions of n such that the successive differences of consecutive parts are strictly decreasing.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 4, 5, 7, 6, 8, 10, 10, 11, 14, 13, 16, 19, 18, 20, 25, 23, 27, 31, 30, 34, 39, 37, 42, 48, 47, 50, 59, 56, 63, 70, 68, 74, 83, 82, 89, 97, 97, 104, 116, 113, 123, 133, 133, 142, 155, 153, 166, 178, 178, 189, 204, 204, 218, 232, 235, 247, 265, 265, 283, 299
Offset: 0
There are a(10) = 8 such partitions of 10:
01: [10]
02: [1, 9]
03: [2, 8]
04: [3, 7]
05: [4, 6]
06: [5, 5]
07: [1, 4, 5]
08: [2, 4, 4]
There are a(11) = 10 such partitions of 11:
01: [11]
02: [1, 10]
03: [2, 9]
04: [3, 8]
05: [4, 7]
06: [5, 6]
07: [1, 4, 6]
08: [1, 5, 5]
09: [2, 4, 5]
10: [3, 4, 4]
-
Table[Length[Select[IntegerPartitions[n],Greater@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
-
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
end
def f(n)
return 1 if n == 0
cnt = 0
partition(n, 1, n).each{|ary|
ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0
}
cnt
end
def A320470(n)
(0..n).map{|i| f(i)}
end
p A320470(50)
A325457
Heinz numbers of integer partitions with strictly decreasing differences.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
6: {1,2}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
12: {1,1,2}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
Cf.
A056239,
A112798,
A320470,
A320510,
A325328,
A325352,
A325360,
A325361,
A325368,
A325399,
A325456,
A325461,
A320470,
A325396.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],Greater@@Differences[primeptn[#]]&]
A325461
Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
15: {2,3}
17: {7}
19: {8}
23: {9}
25: {3,3}
29: {10}
31: {11}
35: {3,4}
37: {12}
41: {13}
43: {14}
Cf.
A056239,
A112798,
A320510,
A325327,
A325362,
A325364,
A325367,
A325388,
A325390,
A325396,
A325399,
A325407,
A325457,
A325460.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&]
Showing 1-6 of 6 results.
Comments