A320348
Number of partition into distinct parts (a_1, a_2, ... , a_m) (a_1 > a_2 > ... > a_m and Sum_{k=1..m} a_k = n) such that a1 - a2, a2 - a_3, ... , a_{m-1} - a_m, a_m are different.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 9, 7, 13, 12, 13, 16, 22, 17, 28, 28, 31, 36, 50, 45, 63, 62, 74, 78, 102, 92, 123, 123, 146, 148, 191, 181, 228, 233, 280, 283, 348, 350, 420, 437, 518, 523, 616, 641, 727, 774, 884, 911, 1038, 1102, 1240, 1292, 1463, 1530, 1715, 1861, 2002
Offset: 1
n = 9
[9] ********* a_1 = 9.
ooooooooo
------------------------------------
[8, 1] * a_2 = 1.
*******o a_1 - a_2 = 7.
oooooooo
------------------------------------
[7, 2] ** a_2 = 2.
*****oo a_1 - a_2 = 5.
ooooooo
------------------------------------
[5, 4] **** a_2 = 4.
*oooo a_1 - a_2 = 1.
ooooo
------------------------------------
a(9) = 4.
From _Gus Wiseman_, May 04 2019: (Start)
The a(1) = 1 through a(11) = 9 strict partitions with distinct differences (where the last part is taken to be 0) are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A325388.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B)
(31) (32) (51) (43) (53) (54) (64) (65)
(41) (52) (62) (72) (73) (74)
(61) (71) (81) (82) (83)
(91) (92)
(631) (A1)
(632)
(641)
(731)
The a(1) = 1 through a(10) = 6 partitions covering an initial interval of positive integers with distinct multiplicities are the following. The Heinz numbers of these partitions are given by A325326.
1 11 111 211 221 21111 2221 22211 22221 222211
1111 2111 111111 22111 221111 2211111 322111
11111 211111 2111111 21111111 2221111
1111111 11111111 111111111 22111111
211111111
1111111111
The a(1) = 1 through a(10) = 6 partitions whose multiplicities cover an initial interval of positive integers and are distinct are the following (A = 10). The Heinz numbers of these partitions are given by A325337.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A)
(211) (221) (411) (322) (332) (441) (433)
(311) (331) (422) (522) (442)
(511) (611) (711) (622)
(811)
(322111)
(End)
Cf.
A007294,
A007862,
A048767,
A098859,
A179269,
A320509,
A320510,
A325324,
A325325,
A325349,
A325367,
A325404,
A325468.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Differences[Append[#,0]]&]],{n,30}] (* Gus Wiseman, May 04 2019 *)
A325324
Number of integer partitions of n whose differences (with the last part taken to be 0) are distinct.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 4, 7, 7, 7, 10, 15, 13, 22, 25, 26, 31, 43, 39, 55, 54, 68, 75, 98, 97, 128, 135, 165, 177, 217, 223, 277, 282, 339, 356, 438, 444, 527, 553, 667, 694, 816, 868, 1015, 1054, 1279, 1304, 1538, 1631, 1849, 1958, 2304, 2360, 2701, 2899, 3267
Offset: 0
The a(1) = 1 through a(11) = 15 partitions (A = 10, B = 11):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B)
(11) (22) (32) (33) (43) (44) (54) (55) (65)
(31) (41) (51) (52) (53) (72) (64) (74)
(311) (411) (61) (62) (81) (73) (83)
(322) (71) (441) (82) (92)
(331) (332) (522) (91) (A1)
(511) (611) (711) (433) (443)
(622) (533)
(631) (551)
(811) (632)
(641)
(722)
(731)
(911)
(6311)
For example, (6,3,1,1) has differences (-3,-2,0,-1), which are distinct, so (6,3,1,1) is counted under a(11).
Cf.
A007862,
A049988,
A098859,
A130091,
A240026,
A320348,
A320466,
A320509,
A325325,
A325349,
A325366,
A325367,
A325368,
A325404,
A325407.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[Append[#,0]]&]],{n,0,30}]
A325368
Heinz numbers of integer partitions with distinct differences between successive parts.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
8: {1,1,1}
16: {1,1,1,1}
24: {1,1,1,2}
27: {2,2,2}
30: {1,2,3}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
60: {1,1,2,3}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
81: {2,2,2,2}
88: {1,1,1,5}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
100: {1,1,3,3}
Cf.
A056239,
A112798,
A130091,
A240026,
A325325,
A325328,
A325352,
A325360,
A325361,
A325366,
A325367,
A325405,
A325456,
A325457.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],UnsameQ@@Differences[primeptn[#]]&]
A325366
Heinz numbers of integer partitions whose augmented differences are distinct.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 99, 101, 102, 103
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
29: {10}
31: {11}
Positions of squarefree numbers in
A325351.
Cf.
A056239,
A093641,
A112798,
A130091,
A325349,
A325355,
A325367,
A325368,
A325389,
A325394,
A325395,
A325396,
A325405.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
aug[y_]:=Table[If[i
A383512
Heinz numbers of conjugate Wilf partitions.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1
The terms together with their prime indices begin:
1: {} 17: {7} 35: {3,4}
2: {1} 19: {8} 37: {12}
3: {2} 20: {1,1,3} 38: {1,8}
4: {1,1} 22: {1,5} 39: {2,6}
5: {3} 23: {9} 40: {1,1,1,3}
7: {4} 25: {3,3} 41: {13}
8: {1,1,1} 26: {1,6} 43: {14}
9: {2,2} 27: {2,2,2} 44: {1,1,5}
10: {1,3} 28: {1,1,4} 45: {2,2,3}
11: {5} 29: {10} 46: {1,9}
13: {6} 31: {11} 47: {15}
14: {1,4} 32: {1,1,1,1,1} 49: {4,4}
15: {2,3} 33: {2,5} 50: {1,3,3}
16: {1,1,1,1} 34: {1,7} 51: {2,7}
Partitions of this type are counted by
A098859.
Also requiring distinct multiplicities gives
A383532, counted by
A383507.
These are the positions of strict rows in
A383534, or squarefree numbers in
A383535.
A122111 represents conjugation in terms of Heinz numbers.
A325349 counts partitions with distinct augmented differences, ranks
A325366.
A383530 counts partitions that are not Wilf or conjugate Wilf, ranks
A383531.
A383709 counts Wilf partitions with distinct augmented differences, ranks
A383712.
-
prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100], UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]
A383513
Heinz numbers of non conjugate Wilf partitions.
Original entry on oeis.org
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246
Offset: 1
The terms together with their prime indices begin:
6: {1,2}
12: {1,1,2}
18: {1,2,2}
21: {2,4}
24: {1,1,1,2}
30: {1,2,3}
36: {1,1,2,2}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
65: {3,6}
66: {1,2,5}
70: {1,3,4}
72: {1,1,1,2,2}
78: {1,2,6}
84: {1,1,2,4}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
Partitions of this type are counted by
A336866.
Including differences of 0 gives complement of
A325367, counted by
A325324.
Also forbidding distinct multiplicities gives
A383531, counted by
A383530.
These are positions of non-strict rows in
A383534, or nonsquarefree numbers in
A383535.
A122111 represents conjugation in terms of Heinz numbers.
A383507 counts partitions that are Wilf and conjugate Wilf, ranks
A383532.
A383709 counts Wilf partitions with distinct augmented differences, ranks
A383712.
Cf.
A000720,
A005117,
A048768,
A238745,
A325325,
A325351,
A325355,
A325366,
A325368,
A381431,
A383506.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]
A325362
Heinz numbers of integer partitions whose differences (with the last part taken to be 0) are weakly increasing.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 110, 111, 113
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
30: {1,2,3}
31: {11}
33: {2,5}
Cf.
A007294,
A056239,
A112798,
A240026,
A320348,
A325327,
A325360,
A325364,
A325367,
A325390,
A325394,
A325400.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],OrderedQ[Differences[Append[primeptn[#],0]]]&]
A325388
Heinz numbers of strict integer partitions with distinct differences (with the last part taken to be 0).
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 122
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
34: {1,7}
35: {3,4}
Cf.
A056239,
A112798,
A320348,
A325324,
A325327,
A325362,
A325364,
A325366,
A325367,
A325368,
A325390,
A325405,
A325460,
A325461,
A325467.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Differences[Append[primeptn[#],0]]&]
A325405
Heinz numbers of integer partitions y such that the k-th differences of y are distinct for all k >= 0 and are disjoint from the i-th differences for i != k.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 122
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
22: {1,5}
23: {9}
26: {1,6}
29: {10}
31: {11}
33: {2,5}
34: {1,7}
35: {3,4}
Cf.
A056239,
A112798,
A279945,
A325325,
A325366,
A325367,
A325368,
A325397,
A325398,
A325399,
A325400,
A325404,
A325406,
A325467.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],UnsameQ@@Join@@Table[Differences[primeMS[#],k],{k,0,PrimeOmega[#]}]&]
A325390
Heinz number of the negated differences plus one of the integer partition with Heinz number n (with the last part taken to be 0).
Original entry on oeis.org
1, 3, 5, 6, 7, 9, 11, 12, 10, 15, 13, 18, 17, 21, 15, 24, 19, 18, 23, 30, 25, 33, 29, 36, 14, 39, 20, 42, 31, 27, 37, 48, 35, 51, 21, 36, 41, 57, 55, 60, 43, 45, 47, 66, 30, 69, 53, 72, 22, 30, 65, 78, 59, 36, 35, 84, 85, 87, 61, 54, 67, 93, 50, 96, 49, 63, 71
Offset: 1
The Heinz number of (6,3,1) is 130, and its negated differences plus one are (4,3,2), which has Heinz number 105, so a(130) = 105.
Number of appearances of n is
A325392(n).
Positions of squarefree numbers are
A325367.
Cf.
A007294,
A007862,
A056239,
A112798,
A320509,
A325324,
A325327,
A325351,
A325352,
A325362,
A325364,
A325460,
A325461.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Table[Times@@Prime/@(1-Differences[Append[primeptn[n],0]]),{n,100}]
Showing 1-10 of 28 results.
Comments