cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 67 results. Next

A325325 Number of integer partitions of n with distinct differences between successive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 5, 8, 11, 12, 16, 22, 21, 30, 34, 42, 49, 64, 67, 87, 95, 117, 132, 160, 169, 207, 230, 274, 301, 360, 395, 463, 506, 602, 656, 762, 834, 960, 1042, 1220, 1311, 1505, 1643, 1859, 2000, 2341, 2491, 2827, 3083, 3464, 3747, 4302, 4561, 5154
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325368.

Examples

			The a(0) = 1 through a(9) = 12 partitions:
  ()  (1)  (2)   (3)   (4)    (5)    (6)    (7)    (8)     (9)
           (11)  (21)  (22)   (32)   (33)   (43)   (44)    (54)
                       (31)   (41)   (42)   (52)   (53)    (63)
                       (211)  (221)  (51)   (61)   (62)    (72)
                              (311)  (411)  (322)  (71)    (81)
                                            (331)  (332)   (441)
                                            (421)  (422)   (522)
                                            (511)  (431)   (621)
                                                   (521)   (711)
                                                   (611)   (4221)
                                                   (4211)  (4311)
                                                           (5211)
For example, (5,2,1,1) has differences (-3,-1,0), which are distinct, so (5,2,1,1) is counted under a(9).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[#]&]],{n,0,30}]

A333382 Number of adjacent unequal parts in the n-th composition in standard-order.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 2, 1, 1, 2, 0, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For n > 0, a(n) is one fewer than the number of maximal runs of the n-th composition in standard-order.

Examples

			The 46th composition in standard order is (2,1,1,2), with maximal runs ((2),(1,1),(2)), so a(46) = 3 - 1 = 2.
		

Crossrefs

Indices of first appearances (not counting 0) are A113835.
Partitions whose 0-appended first differences are a run are A007862.
Partitions whose first differences are a run are A049988.
A triangle counting maximal anti-runs of compositions is A106356.
A triangle counting maximal runs of compositions is A238279.
All of the following pertain to compositions in standard order (A066099):
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Anti-runs are ranked by A333489.
- Anti-runs are counted by A333381.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Select[Partition[stc[n],2,1],UnsameQ@@#&]],{n,0,100}]

Formula

For n > 0, a(n) = A124767(n) - 1.

A007862 Number of triangular numbers that divide n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 5, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 4, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 5, 1, 1, 3, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Also a(n) is the total number of ways to represent n+1 as a centered polygonal number of the form km(m+1)/2+1 for k>1. - Alexander Adamchuk, Apr 26 2007
Number of oblong numbers that divide 2n. - Ray Chandler, Jun 24 2008
The number of divisors d of 2n such that d+1 is also a divisor of 2n, see first formula. - Michel Marcus, Jun 18 2015
From Gus Wiseman, May 03 2019: (Start)
Also the number of integer partitions of n forming a finite arithmetic progression with offset 0, i.e. the differences are all equal (with the last part taken to be 0). The Heinz numbers of these partitions are given by A325327. For example, the a(1) = 1 through a(12) = 3 partitions are (A = 10, B = 11, C = 12):
1 2 3 4 5 6 7 8 9 A B C
21 42 63 4321 84
321 642
(End)

Crossrefs

Programs

  • Haskell
    a007862 = sum . map a010054 . a027750_row
    -- Reinhard Zumkeller, Jul 05 2014
    
  • Mathematica
    sup=90; TriN=Array[ (#+1)(#+2)/2&, Floor[ N[ Sqrt[ sup*2 ] ] ]-1 ]; Array[ Function[n, 1+Count[ Map[ Mod[ n, # ]&, TriN ], 0 ] ], sup ]
    Table[Count[Divisors[k], ?(IntegerQ[Sqrt[8 # + 1]] &)], {k, 105}] (* _Jayanta Basu, Aug 12 2013 *)
    Table[Length[Select[IntegerPartitions[n],SameQ@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    a(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ Michel Marcus, Jun 18 2015
    
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A007862(n): return sum(1 for a, b in pairwise(divisors(n<<1)) if a+1==b)  # Chai Wah Wu, Jun 09 2025

Formula

a(n) = Sum_{d|2*n,d+1|2*n} 1.
G.f.: Sum_{k>=1} x^A000217(k)/(1-x^A000217(k)). - Jon Perry, Jul 03 2004
a(A130317(n)) = n and a(m) <> n for m < A130317(n). - Reinhard Zumkeller, May 23 2007
a(n) = A129308(2n). - Ray Chandler, Jun 24 2008
a(n) = Sum_{k=1..A000005(n)} A010054(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Dec 31 2023

Extensions

Extended by Ray Chandler, Jun 24 2008

A175342 Number of arithmetic progressions (where the difference between adjacent terms is either positive, 0, or negative) of positive integers that sum to n.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 8, 10, 15, 14, 12, 22, 14, 18, 28, 21, 18, 34, 20, 28, 38, 28, 24, 46, 31, 32, 48, 38, 30, 62, 32, 40, 58, 42, 46, 73, 38, 46, 68, 58, 42, 84, 44, 56, 90, 56, 48, 94, 55, 70, 90, 66, 54, 106, 70, 74, 100, 70, 60, 130, 62, 74, 118, 81, 82, 130, 68, 84, 120
Offset: 1

Views

Author

Leroy Quet, Apr 17 2010

Keywords

Examples

			From _Gus Wiseman_, May 15 2019: (Start)
The a(1) = 1 through a(8) = 10 compositions with equal differences:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (1111)  (41)     (42)      (43)       (44)
                            (11111)  (51)      (52)       (53)
                                     (123)     (61)       (62)
                                     (222)     (1111111)  (71)
                                     (321)                (2222)
                                     (111111)             (11111111)
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Differences[#]&]],{n,0,15}] (* returns a(0) = 1, Gus Wiseman, May 15 2019*)

Formula

a(n) = 2*A049988(n) - A000005(n).
G.f.: x/(1-x) + Sum_{k>=2} x^k * (1 + x^(k(k-1)/2)) / (1 - x^(k(k-1)/2)) / (1 -x^k).

Extensions

Edited and extended by Max Alekseyev, May 03 2010

A325324 Number of integer partitions of n whose differences (with the last part taken to be 0) are distinct.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 4, 7, 7, 7, 10, 15, 13, 22, 25, 26, 31, 43, 39, 55, 54, 68, 75, 98, 97, 128, 135, 165, 177, 217, 223, 277, 282, 339, 356, 438, 444, 527, 553, 667, 694, 816, 868, 1015, 1054, 1279, 1304, 1538, 1631, 1849, 1958, 2304, 2360, 2701, 2899, 3267
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The Heinz numbers of these partitions are given by A325367.

Examples

			The a(1) = 1 through a(11) = 15 partitions (A = 10, B = 11):
  (1)  (2)   (3)  (4)   (5)    (6)    (7)    (8)    (9)    (A)    (B)
       (11)       (22)  (32)   (33)   (43)   (44)   (54)   (55)   (65)
                  (31)  (41)   (51)   (52)   (53)   (72)   (64)   (74)
                        (311)  (411)  (61)   (62)   (81)   (73)   (83)
                                      (322)  (71)   (441)  (82)   (92)
                                      (331)  (332)  (522)  (91)   (A1)
                                      (511)  (611)  (711)  (433)  (443)
                                                           (622)  (533)
                                                           (631)  (551)
                                                           (811)  (632)
                                                                  (641)
                                                                  (722)
                                                                  (731)
                                                                  (911)
                                                                  (6311)
For example, (6,3,1,1) has differences (-3,-2,0,-1), which are distinct, so (6,3,1,1) is counted under a(11).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[Append[#,0]]&]],{n,0,30}]

A240026 Number of partitions of n such that the successive differences of consecutive parts are nondecreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 16, 21, 27, 32, 43, 50, 60, 75, 90, 103, 128, 146, 170, 203, 234, 264, 315, 355, 402, 467, 530, 589, 684, 764, 851, 969, 1083, 1195, 1360, 1504, 1659, 1863, 2063, 2258, 2531, 2779, 3039, 3379, 3709, 4032, 4474, 4880, 5304, 5846, 6373, 6891, 7578, 8227, 8894, 9727, 10550, 11357, 12405, 13404, 14419
Offset: 0

Views

Author

Joerg Arndt, Mar 31 2014

Keywords

Comments

Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) <= p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are weakly increasing. The Heinz numbers of these partitions are given by A325360. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are weakly increasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(10) = 27 such partitions of 10:
01:  [ 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 1 1 3 ]
04:  [ 1 1 1 1 1 1 4 ]
05:  [ 1 1 1 1 1 2 3 ]
06:  [ 1 1 1 1 1 5 ]
07:  [ 1 1 1 1 2 4 ]
08:  [ 1 1 1 1 6 ]
09:  [ 1 1 1 2 5 ]
10:  [ 1 1 1 7 ]
11:  [ 1 1 2 6 ]
12:  [ 1 1 3 5 ]
13:  [ 1 1 8 ]
14:  [ 1 2 3 4 ]
15:  [ 1 2 7 ]
16:  [ 1 3 6 ]
17:  [ 1 9 ]
18:  [ 2 2 2 2 2 ]
19:  [ 2 2 2 4 ]
20:  [ 2 2 6 ]
21:  [ 2 3 5 ]
22:  [ 2 8 ]
23:  [ 3 3 4 ]
24:  [ 3 7 ]
25:  [ 4 6 ]
26:  [ 5 5 ]
27:  [ 10 ]
		

Crossrefs

Cf. A240027 (strictly increasing differences).
Cf. A179255 (distinct parts, nondecreasing), A179254 (distinct parts, strictly increasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OrderedQ[Differences[#]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse
      }
      cnt
    end
    def A240026(n)
      (0..n).map{|i| f(i)}
    end
    p A240026(50) # Seiichi Manyama, Oct 13 2018

A238424 Number of partitions of n without three consecutive parts in arithmetic progression.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 13, 13, 19, 24, 30, 36, 47, 54, 72, 85, 106, 123, 151, 178, 220, 256, 314, 362, 432, 505, 605, 692, 827, 953, 1121, 1303, 1522, 1729, 2037, 2321, 2691, 3095, 3577, 4061, 4699, 5334, 6126, 6959, 7966, 9005, 10317, 11638, 13252, 14977
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 26 2014

Keywords

Comments

Also the number of partitions of n whose first differences are an anti-run, meaning there are no adjacent equal differences. - Gus Wiseman, Mar 31 2020

Examples

			The a(8) = 13 such partitions are:
01:  [ 3 2 2 1 ]
02:  [ 3 3 1 1 ]
03:  [ 3 3 2 ]
04:  [ 4 2 1 1 ]
05:  [ 4 2 2 ]
06:  [ 4 3 1 ]
07:  [ 4 4 ]
08:  [ 5 2 1 ]
09:  [ 5 3 ]
10:  [ 6 1 1 ]
11:  [ 6 2 ]
12:  [ 7 1 ]
13:  [ 8 ]
		

Crossrefs

Cf. A238433 (partitions avoiding equidistant arithmetic progressions).
Cf. A238571 (partitions avoiding any arithmetic progression).
Cf. A238687.
The version for compositions is A238423, with strict case A325849.
The version for permutations is A295370.
The strict case is A332668.
The Heinz numbers of these partitions are the complement of A333195.
Partitions with equal differences are A049988.

Programs

  • Mathematica
    a[n_,r_,d_] := a[n,r,d] = Block[{j}, If[n == 0, 1, Sum[If[j == r+d, 0, a[n-j, j, j - r]], {j, Min[n, r]}]]]; a[n_] := a[n, 2*n+1, 0]; a /@ Range[0, 100] (* Giovanni Resta, Mar 02 2014 *)
    Table[Length[Select[IntegerPartitions[n],!MemberQ[Differences[#,2],0]&]],{n,0,30}] (* Gus Wiseman, Mar 31 2020 *)

A325352 Heinz number of the differences plus one of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 6, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 9, 1, 16, 7, 17, 3, 12, 1, 19, 11, 20, 1, 15, 1, 22, 6, 23, 1, 24, 2, 10, 13, 26, 1, 12, 5, 28, 17, 29, 1, 18, 1, 31, 10, 32, 7, 21, 1, 34, 19, 15, 1, 24, 1, 37, 6, 38
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The only fixed point is 1 because otherwise the sequence decreases omega (A001222) by one.

Examples

			The partition (3,2,2,1) with Heinz number 90 has differences plus one (2,1,2) with Heinz number 18, so a(90) = 18.
		

Crossrefs

Positions of m's are A008578 (m = 1), A001248 (m = 2), A006094 (m = 3), A030078 (m = 4), A090076 (m = 5).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    db[n_]:=Times@@Prime/@(1+Differences[primeMS[n]]);
    Table[db[n],{n,100}]

A320466 Number of partitions of n such that the successive differences of consecutive parts are nonincreasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 7, 9, 12, 12, 13, 18, 17, 21, 25, 24, 27, 34, 33, 38, 44, 43, 47, 58, 56, 62, 70, 70, 78, 90, 84, 96, 109, 108, 118, 132, 127, 140, 158, 158, 167, 189, 185, 204, 221, 218, 236, 260, 261, 282, 301, 299, 322, 358, 350, 376, 405, 404, 432, 472, 466, 500
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) >= p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are weakly decreasing. The Heinz numbers of these partitions are given by A325361. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are weakly decreasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(10) = 12 such partitions of 10:
01: [10]
02: [1, 9]
03: [2, 8]
04: [3, 7]
05: [4, 6]
06: [5, 5]
07: [1, 4, 5]
08: [2, 4, 4]
09: [1, 2, 3, 4]
10: [1, 3, 3, 3]
11: [2, 2, 2, 2, 2]
12: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
There are a(11) = 13 such partitions of 11:
01: [11]
02: [1, 10]
03: [2, 9]
04: [3, 8]
05: [4, 7]
06: [5, 6]
07: [1, 4, 6]
08: [1, 5, 5]
09: [2, 4, 5]
10: [3, 4, 4]
11: [2, 3, 3, 3]
12: [1, 2, 2, 2, 2, 2]
13: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
		

Crossrefs

Cf. A320382 (distinct parts, nonincreasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320466(n)
      (0..n).map{|i| f(i)}
    end
    p A320466(50)

A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A049988.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
For example, 60 is the Heinz number of (3,2,1,1), which has differences (-1,-1,0), which are not equal, so 60 does not belong to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[primeptn[#]]&]
Showing 1-10 of 67 results. Next