cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A325325 Number of integer partitions of n with distinct differences between successive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 5, 8, 11, 12, 16, 22, 21, 30, 34, 42, 49, 64, 67, 87, 95, 117, 132, 160, 169, 207, 230, 274, 301, 360, 395, 463, 506, 602, 656, 762, 834, 960, 1042, 1220, 1311, 1505, 1643, 1859, 2000, 2341, 2491, 2827, 3083, 3464, 3747, 4302, 4561, 5154
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325368.

Examples

			The a(0) = 1 through a(9) = 12 partitions:
  ()  (1)  (2)   (3)   (4)    (5)    (6)    (7)    (8)     (9)
           (11)  (21)  (22)   (32)   (33)   (43)   (44)    (54)
                       (31)   (41)   (42)   (52)   (53)    (63)
                       (211)  (221)  (51)   (61)   (62)    (72)
                              (311)  (411)  (322)  (71)    (81)
                                            (331)  (332)   (441)
                                            (421)  (422)   (522)
                                            (511)  (431)   (621)
                                                   (521)   (711)
                                                   (611)   (4221)
                                                   (4211)  (4311)
                                                           (5211)
For example, (5,2,1,1) has differences (-3,-1,0), which are distinct, so (5,2,1,1) is counted under a(9).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[#]&]],{n,0,30}]

A007294 Number of partitions of n into nonzero triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 4, 4, 6, 7, 7, 10, 11, 11, 15, 17, 17, 22, 24, 25, 32, 35, 36, 44, 48, 50, 60, 66, 68, 81, 89, 92, 107, 117, 121, 141, 153, 159, 181, 197, 205, 233, 252, 262, 295, 320, 332, 372, 401, 417, 465, 501, 520, 575, 619, 645, 710, 763
Offset: 0

Views

Author

Keywords

Comments

Also number of decreasing integer sequences l(1) >= l(2) >= l(3) >= .. 0 such that sum('i*l(i)','i'=1..infinity)=n.
a(n) is also the number of partitions of n such that #{parts equal to i} >= #{parts equal to j} if i <= j.
Also the number of partitions of n (necessarily into distinct parts) where the part sizes are monotonically decreasing (including the last part, which is the difference between the last part and a "part" of size 0). These partitions are the conjugates of the partitions with number of parts of size i increasing. - Franklin T. Adams-Watters, Apr 08 2008
Also partitions with condition as in A179255, and additionally, if more than one part, first difference >= first part: for example, a(10)=7 as there are 7 such partitions of 10: 1+2+3+4 = 1+2+7 = 1+3+6 = 1+9 = 2+8 = 3+7 = 10. - Joerg Arndt, Mar 22 2011
Number of members of A181818 with a bigomega value of n (cf. A001222). - Matthew Vandermast, May 19 2012

Examples

			6 = 3+3 = 3+1+1+1 = 1+1+1+1+1+1 so a(6) = 4.
a(7)=4: Four sequences as above are (7,0,..), (5,1,0,..), (3,2,0,..),(2,1,1,0,..). They correspond to the partitions 1^7, 2 1^5, 2^2 1^3, 3 2 1^2 of seven or in the main description to the partitions 1^7, 3 1^4, 3^2 1, 6 1.
From _Gus Wiseman_, May 03 2019: (Start)
The a(1) = 1 through a(9) = 6 partitions using nonzero triangular numbers are the following. The Heinz numbers of these partitions are given by A325363.
  1   11   3     31     311     6        61        611        63
           111   1111   11111   33       331       3311       333
                                3111     31111     311111     6111
                                111111   1111111   11111111   33111
                                                              3111111
                                                              111111111
The a(1) = 1 through a(10) = 7 partitions with weakly decreasing multiplicities are the following. Equivalent to Matthew Vandermast's comment, the Heinz numbers of these partitions are given by A025487 (products of primorial numbers).
  1  11  21   211   2111   321     3211     32111     32211      4321
         111  1111  11111  2211    22111    221111    222111     322111
                           21111   211111   2111111   321111     2221111
                           111111  1111111  11111111  2211111    3211111
                                                      21111111   22111111
                                                      111111111  211111111
                                                                 1111111111
The a(1) = 1 through a(11) = 7 partitions with weakly increasing differences (where the last part is taken to be zero) are the following. The Heinz numbers of these partitions are given by A325362 (A = 10, B = 11).
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)    (A)     (B)
            (21)  (31)  (41)  (42)   (52)   (62)   (63)   (73)    (83)
                              (51)   (61)   (71)   (72)   (82)    (92)
                              (321)  (421)  (521)  (81)   (91)    (A1)
                                                   (531)  (631)   (731)
                                                   (621)  (721)   (821)
                                                          (4321)  (5321)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A102462.
Row sums of array A176723 and triangle A176724. - Wolfdieter Lang, Jul 19 2010
Cf. A179255 (condition only on differences), A179269 (parts strictly increasing instead of nondecreasing). - Joerg Arndt, Mar 22 2011
Row sums of A319797.

Programs

  • Haskell
    a007294 = p $ tail a000217_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 28 2013
    
  • Maple
    b:= proc(n,i) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=0 then 0
        else b(n, i-1) +b(n-i*(i+1)/2, i)
          fi
        end:
    a:= n-> b(n, floor(sqrt(2*n))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 22 2011
    isNondecrP :=proc(L) slp := DIFF(DIFF(L)) ; min(op(%)) >= 0 ; end proc:
    A007294 := proc(n) local a, p; a := 0 ; if n = 0 then return 1 ; end if; for p in combinat[partition](n) do if nops(p) = nops(convert(p, set)) then if isNondecrP(p) then if nops(p) =1 then a := a+1 ; elif op(2, p) >= 2*op(1, p) then a := a+1; end if; end if; end if; end do; a ; end proc:
    seq(A007294(n), n=0..30) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    CoefficientList[ Series[ 1/Product[1 - x^(i(i + 1)/2), {i, 1, 50}], {x, 0, 70}], x]
    (* also *)
    t = Table[n (n + 1)/2, {n, 1, 200}] ; p[n_] := IntegerPartitions[n, All, t]; Table[p[n], {n, 0, 12}] (*shows partitions*)
    a[n_] := Length@p@n; a /@Range[0, 80]
    (* Clark Kimberling, Mar 09 2014 *)
    b[n_, i_] := b[n, i] = Which[n < 0, 0, n == 0, 1, i == 0, 0, True, b[n, i-1]+b[n-i*(i+1)/2, i]]; a[n_] := b[n, Floor[Sqrt[2*n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],OrderedQ[Differences[Append[#,0]]]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
    nmax = 58; t = Table[PolygonalNumber[n], {n, nmax}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[t, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
  • PARI
    N=66; Vec(1/prod(k=1,N,1-x^(k*(k+1)\2))+O(x^N)) \\ Joerg Arndt, Apr 14 2013
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    @lru_cache(maxsize=None)
    def A007294(n):
        @lru_cache(maxsize=None)
        def a(n): return is_square((n<<3)+1)
        @lru_cache(maxsize=None)
        def c(n): return sum(d for d in divisors(n,generator=True) if a(d))
        return (c(n)+sum(c(k)*A007294(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024
  • Sage
    def A007294(n):
        has_nondecreasing_diffs = lambda x: min(differences(x, 2)) >= 0
        special = lambda x: (x[1]-x[0]) >= x[0]
        allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_nondecreasing_diffs(x))
        return len([1 for x in Partitions(n, max_slope=-1) if allowed(x[::-1])]) # D. S. McNeil, Jan 06 2011
    

Formula

G.f.: 1/Product_{k>=2} (1-z^binomial(k, 2)).
For n>0: a(n) = b(n, 1) where b(n, k) = if n>k*(k+1)/2 then b(n-k*(k+1)/2, k) + b(n, k+1) else (if n=k*(k+1)/2 then 1 else 0). - Reinhard Zumkeller, Aug 26 2003
For n>0, a(n) is Euler Transform of [1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,...], i.e A010054, n>0. - Benedict W. J. Irwin, Jul 29 2016
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2) * Zeta(3/2) / (2^(7/2) * sqrt(3) * Pi * n^(3/2)) [Brigham 1950 (exponential part), Almkvist 2006]. - Vaclav Kotesovec, Dec 31 2016
G.f.: Sum_{i>=0} x^(i*(i+1)/2) / Product_{j=1..i} (1 - x^(j*(j+1)/2)). - Ilya Gutkovskiy, May 07 2017

Extensions

Additional comments from Roland Bacher, Jun 17 2001

A049988 Number of nondecreasing arithmetic progressions of positive integers with sum n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 5, 7, 9, 9, 7, 14, 8, 11, 16, 13, 10, 20, 11, 17, 21, 16, 13, 27, 17, 18, 26, 22, 16, 35, 17, 23, 31, 23, 25, 41, 20, 25, 36, 33, 22, 46, 23, 31, 48, 30, 25, 52, 29, 38, 47, 36, 28, 57, 37, 41, 52, 37, 31, 71, 32, 39, 62, 44, 43, 69, 35, 45, 62, 57, 37, 79, 38
Offset: 0

Views

Author

Keywords

Comments

From Gus Wiseman, May 03 2019: (Start)
a(n) is the number of integer partitions of n with equal differences. The Heinz numbers of these partitions are given by A325328. For example, the a(1) = 1 through a(9) = 9 partitions are:
1 2 3 4 5 6 7 8 9
11 21 22 32 33 43 44 54
111 31 41 42 52 53 63
1111 11111 51 61 62 72
222 1111111 71 81
321 2222 333
111111 11111111 432
531
111111111
(End)
From Petros Hadjicostas, Sep 29 2019: (Start)
We show how Leroy Quet's g.f. Sum_{n >= 0} a(n)*x^n = 1/(1-x) + Sum_{k >= 2} x^k/(1-x^(k*(k-1)/2))/(1-x^k) in the Formula section below can be derived from Graeme McRae's g.f. for A049982 (see one of the links below).
Let b(n) = A049982(n) for n >= 1. Then Graeme McRae proved that Sum_{n >= 1} b(n)*x^n = Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = A000217(k) = k*(k+1)/2.
Since a(n) - b(n) = A000005(n) for n >= 1, to finish the proof, we only need to show that K(x) := 1 + Sum_{n >= 1} a(n)*x^n - Sum_{n >= 1} b(n)*x^n is the g.f. of A000005 (= number of divisors). But it is easy to show that K(x) = 1 + Sum_{k >= 1} x^k/(1 - x^k) = 1 + Sum_{n >= 1} A000005(n)*x^n (Lambert series for the number of divisors function). (End)

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==0,1,Block[{i,c=Floor[(n-1)/2]+DivisorSigma[0,n]},Do[i=1;While[i*kGus Wiseman, May 07 2019 *)
    Table[Length[Select[IntegerPartitions[n],SameQ@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • PARI
    seq(n)={Vec(1/(1-x) + sum(k=2, n, x^k/(1 - x^(k*(k-1)/2))/(1-x^k) + O(x*x^n)))} \\ Andrew Howroyd, Sep 28 2019

Formula

G.f.: 1/(1-x) + Sum_{k>=2} x^k/(1-x^(k*(k-1)/2))/(1-x^k). - Leroy Quet, Apr 08 2010. [Edited by Gus Wiseman, May 03 2019]
a(n) = A049982(n) + A000005(n) = A049980(n) + A000005(n) - 1 for n >= 1. - Petros Hadjicostas, Sep 28 2019

Extensions

Edited by Max Alekseyev, May 03 2010
a(0) = 1 prepended by Gus Wiseman, May 03 2019

A325324 Number of integer partitions of n whose differences (with the last part taken to be 0) are distinct.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 4, 7, 7, 7, 10, 15, 13, 22, 25, 26, 31, 43, 39, 55, 54, 68, 75, 98, 97, 128, 135, 165, 177, 217, 223, 277, 282, 339, 356, 438, 444, 527, 553, 667, 694, 816, 868, 1015, 1054, 1279, 1304, 1538, 1631, 1849, 1958, 2304, 2360, 2701, 2899, 3267
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The Heinz numbers of these partitions are given by A325367.

Examples

			The a(1) = 1 through a(11) = 15 partitions (A = 10, B = 11):
  (1)  (2)   (3)  (4)   (5)    (6)    (7)    (8)    (9)    (A)    (B)
       (11)       (22)  (32)   (33)   (43)   (44)   (54)   (55)   (65)
                  (31)  (41)   (51)   (52)   (53)   (72)   (64)   (74)
                        (311)  (411)  (61)   (62)   (81)   (73)   (83)
                                      (322)  (71)   (441)  (82)   (92)
                                      (331)  (332)  (522)  (91)   (A1)
                                      (511)  (611)  (711)  (433)  (443)
                                                           (622)  (533)
                                                           (631)  (551)
                                                           (811)  (632)
                                                                  (641)
                                                                  (722)
                                                                  (731)
                                                                  (911)
                                                                  (6311)
For example, (6,3,1,1) has differences (-3,-2,0,-1), which are distinct, so (6,3,1,1) is counted under a(11).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Differences[Append[#,0]]&]],{n,0,30}]

A325368 Heinz numbers of integer partitions with distinct differences between successive parts.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A325325.

Examples

			Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
    8: {1,1,1}
   16: {1,1,1,1}
   24: {1,1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   88: {1,1,1,5}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  100: {1,1,3,3}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],UnsameQ@@Differences[primeptn[#]]&]

A325352 Heinz number of the differences plus one of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 6, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 9, 1, 16, 7, 17, 3, 12, 1, 19, 11, 20, 1, 15, 1, 22, 6, 23, 1, 24, 2, 10, 13, 26, 1, 12, 5, 28, 17, 29, 1, 18, 1, 31, 10, 32, 7, 21, 1, 34, 19, 15, 1, 24, 1, 37, 6, 38
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The only fixed point is 1 because otherwise the sequence decreases omega (A001222) by one.

Examples

			The partition (3,2,2,1) with Heinz number 90 has differences plus one (2,1,2) with Heinz number 18, so a(90) = 18.
		

Crossrefs

Positions of m's are A008578 (m = 1), A001248 (m = 2), A006094 (m = 3), A030078 (m = 4), A090076 (m = 5).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    db[n_]:=Times@@Prime/@(1+Differences[primeMS[n]]);
    Table[db[n],{n,100}]

A320466 Number of partitions of n such that the successive differences of consecutive parts are nonincreasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 7, 9, 12, 12, 13, 18, 17, 21, 25, 24, 27, 34, 33, 38, 44, 43, 47, 58, 56, 62, 70, 70, 78, 90, 84, 96, 109, 108, 118, 132, 127, 140, 158, 158, 167, 189, 185, 204, 221, 218, 236, 260, 261, 282, 301, 299, 322, 358, 350, 376, 405, 404, 432, 472, 466, 500
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) >= p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are weakly decreasing. The Heinz numbers of these partitions are given by A325361. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are weakly decreasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(10) = 12 such partitions of 10:
01: [10]
02: [1, 9]
03: [2, 8]
04: [3, 7]
05: [4, 6]
06: [5, 5]
07: [1, 4, 5]
08: [2, 4, 4]
09: [1, 2, 3, 4]
10: [1, 3, 3, 3]
11: [2, 2, 2, 2, 2]
12: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
There are a(11) = 13 such partitions of 11:
01: [11]
02: [1, 10]
03: [2, 9]
04: [3, 8]
05: [4, 7]
06: [5, 6]
07: [1, 4, 6]
08: [1, 5, 5]
09: [2, 4, 5]
10: [3, 4, 4]
11: [2, 3, 3, 3]
12: [1, 2, 2, 2, 2, 2]
13: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
		

Crossrefs

Cf. A320382 (distinct parts, nonincreasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0
      }
      cnt
    end
    def A320466(n)
      (0..n).map{|i| f(i)}
    end
    p A320466(50)

A325328 Heinz numbers of finite arithmetic progressions (integer partitions with equal differences).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A049988.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
For example, 60 is the Heinz number of (3,2,1,1), which has differences (-1,-1,0), which are not equal, so 60 does not belong to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Differences[primeptn[#]]&]

A240027 Number of partitions of n such that the successive differences of consecutive parts are strictly increasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 7, 9, 9, 13, 14, 16, 20, 23, 25, 32, 34, 38, 45, 51, 55, 65, 70, 77, 89, 99, 106, 122, 131, 143, 161, 177, 189, 211, 229, 248, 272, 298, 317, 349, 378, 406, 440, 479, 511, 554, 597, 640, 686, 744, 792, 850, 913, 973, 1039, 1122, 1189, 1268, 1358, 1444, 1532, 1646, 1742, 1847, 1975, 2094, 2210, 2366
Offset: 0

Views

Author

Joerg Arndt, Mar 31 2014

Keywords

Comments

Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) < p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are strictly increasing. The Heinz numbers of these partitions are given by A325456. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly increasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(15) = 25 such partitions of 15:
01:  [ 1 1 2 4 7 ]
02:  [ 1 1 2 11 ]
03:  [ 1 1 3 10 ]
04:  [ 1 1 4 9 ]
05:  [ 1 1 13 ]
06:  [ 1 2 4 8 ]
07:  [ 1 2 12 ]
08:  [ 1 3 11 ]
09:  [ 1 4 10 ]
10:  [ 1 14 ]
11:  [ 2 2 3 8 ]
12:  [ 2 2 4 7 ]
13:  [ 2 2 11 ]
14:  [ 2 3 10 ]
15:  [ 2 4 9 ]
16:  [ 2 13 ]
17:  [ 3 3 9 ]
18:  [ 3 4 8 ]
19:  [ 3 12 ]
20:  [ 4 4 7 ]
21:  [ 4 11 ]
22:  [ 5 10 ]
23:  [ 6 9 ]
24:  [ 7 8 ]
25:  [ 15 ]
		

Crossrefs

Cf. A240026 (nondecreasing differences).
Cf. A179255 (distinct parts, nondecreasing), A179254 (distinct parts, strictly increasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Less@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A240027(n)
      (0..n).map{|i| f(i)}
    end
    p A240027(50) # Seiichi Manyama, Oct 13 2018

A325394 Heinz numbers of integer partitions whose augmented differences are weakly increasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 64, 67, 71, 73, 75, 77, 79, 81, 83, 89, 91, 97, 101, 103, 105, 107, 109, 113, 119, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The enumeration of these partitions by sum is given by A325356.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
Showing 1-10 of 33 results. Next