cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A333489 Numbers k such that the k-th composition in standard order is an anti-run (no adjacent equal parts).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 24, 25, 32, 33, 34, 37, 38, 40, 41, 44, 45, 48, 49, 50, 52, 54, 64, 65, 66, 68, 69, 70, 72, 76, 77, 80, 81, 82, 88, 89, 96, 97, 98, 101, 102, 104, 105, 108, 109, 128, 129, 130, 132, 133, 134, 137, 140, 141
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()          33: (5,1)         70: (4,1,2)
    1: (1)         34: (4,2)         72: (3,4)
    2: (2)         37: (3,2,1)       76: (3,1,3)
    4: (3)         38: (3,1,2)       77: (3,1,2,1)
    5: (2,1)       40: (2,4)         80: (2,5)
    6: (1,2)       41: (2,3,1)       81: (2,4,1)
    8: (4)         44: (2,1,3)       82: (2,3,2)
    9: (3,1)       45: (2,1,2,1)     88: (2,1,4)
   12: (1,3)       48: (1,5)         89: (2,1,3,1)
   13: (1,2,1)     49: (1,4,1)       96: (1,6)
   16: (5)         50: (1,3,2)       97: (1,5,1)
   17: (4,1)       52: (1,2,3)       98: (1,4,2)
   18: (3,2)       54: (1,2,1,2)    101: (1,3,2,1)
   20: (2,3)       64: (7)          102: (1,3,1,2)
   22: (2,1,2)     65: (6,1)        104: (1,2,4)
   24: (1,4)       66: (5,2)        105: (1,2,3,1)
   25: (1,3,1)     68: (4,3)        108: (1,2,1,3)
   32: (6)         69: (4,2,1)      109: (1,2,1,2,1)
		

Crossrefs

Anti-runs summing to n are counted by A003242(n).
A triangle counting maximal anti-runs of compositions is A106356.
A triangle counting maximal runs of compositions is A238279 or A238130.
Partitions whose first differences are an anti-run are A238424.
All of the following pertain to compositions in standard order (A066099):
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,x_,_}]&]

A325535 Number of inseparable partitions of n; see Comments.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 5, 8, 11, 16, 19, 28, 35, 48, 60, 79, 99, 131, 161, 205, 256, 324, 397, 498, 609, 755, 921, 1131, 1372, 1677, 2022, 2452, 2952, 3561, 4260, 5116, 6102, 7291, 8667, 10309, 12210, 14477, 17087, 20177, 23752, 27957, 32804, 38496, 45049, 52704
Offset: 0

Views

Author

Clark Kimberling, May 08 2019

Keywords

Comments

Definition: a partition is separable if there is an ordering of its parts in which no consecutive parts are identical; otherwise the partition is inseparable.
A partition with k parts is inseparable if and only if there is a part whose multiplicity is greater than ceiling(k/2). - Andrew Howroyd, Jan 17 2024

Examples

			For n=5, the partition 1+2+2 is separable as 2+1+2, and 2+1+1+1 is inseparable.
From _Gus Wiseman_, Jun 27 2020: (Start)
The a(2) = 2 through a(9) = 11 inseparable partitions:
  11   111   22     2111    33       2221      44         333
             1111   11111   222      4111      2222       3222
                            3111     31111     5111       6111
                            21111    211111    41111      22221
                            111111   1111111   221111     51111
                                               311111     321111
                                               2111111    411111
                                               11111111   2211111
                                                          3111111
                                                          21111111
                                                          111111111
(End)
		

Crossrefs

The Heinz numbers of these partitions are given by A335448.
Strict partitions are counted by A000009 and are all separable.
Anti-run compositions are counted by A003242.
Anti-run patterns are counted by A005649.
Partitions whose differences are an anti-run are A238424.
Separable partitions are counted by A325534.
Anti-run compositions are ranked by A333489.
Anti-run permutations of prime indices are counted by A335452.

Programs

  • Mathematica
    u=Table[Length[Select[Map[Quotient[(1 + Length[#]), Max[Map[Length, Split[#]]]] &,
    IntegerPartitions[nn]], # > 1 &]], {nn, 50}]
    Table[PartitionsP[n] - u[[n]], {n, 1, Length[u]}]
    (* Peter J. C. Moses, May 07 2019 *)
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,10}] (* Gus Wiseman, Jun 27 2020 *)
  • PARI
    seq(n) = {Vec(sum(k=1, (n+1)\2, x^(2*k-1)*(1 + x - x^(k-1))/((1-x^(k+1))*prod(j=1, k-1, 1 - x^j, 1 + O(x^(n-2*k+2)))), O(x*x^n)), -(n+1))} \\ Andrew Howroyd, Jan 17 2024

Formula

a(n) = A000041(n) - A325534(n).
a(n) = Sum_{k>=1} x^(2*k-1)*(1 + x - x^(k-1))/((1-x^(k+1))*Product_{j=1..k-1} (1 - x^j)). - Andrew Howroyd, Jan 17 2024

Extensions

a(0)=0 prepended by Andrew Howroyd, Jan 31 2024

A333381 Number of maximal anti-runs of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 3, 5, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 3, 3, 3, 3, 4, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 3, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2020

Keywords

Comments

Anti-runs are sequences without any adjacent equal terms.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For n > 0, also one plus the number of adjacent equal pairs in the n-th composition in standard order.

Examples

			The 46th composition in standard order is (2,1,1,2), with maximal anti-runs ((2,1),(1,2)), so a(46) = 2.
		

Crossrefs

Anti-runs summing to n are counted by A003242(n).
A triangle counting maximal anti-runs of compositions is A106356.
A triangle counting maximal runs of compositions is A238279.
Partitions whose first differences are an anti-run are A238424.
All of the following pertain to compositions in standard order (A066099):
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Adjacent unequal pairs are counted by A333382.
- Anti-runs are ranked by A333489.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Split[stc[n],UnsameQ]],{n,0,100}]

Formula

For n > 0, a(n) = A124762(n) + 1.

A005649 Expansion of e.g.f. (2 - e^x)^(-2).

Original entry on oeis.org

1, 2, 8, 44, 308, 2612, 25988, 296564, 3816548, 54667412, 862440068, 14857100084, 277474957988, 5584100659412, 120462266974148, 2772968936479604, 67843210855558628, 1757952715142990612, 48093560991292628228, 1385244691781856307124
Offset: 0

Views

Author

Keywords

Comments

Exponential self-convolution of numbers of preferential arrangements.
Number of compatible bipartitional relations on a set of cardinality n. - Ralf Stephan, Apr 27 2003
Stirling transform of A000142, shifted left one place: 1, 2, 6, 24, 120, 720, ... - Philippe Deléham, May 17 2005; corrected by Ilya Gutkovskiy, Jul 25 2018
With an extra 1 at the beginning, coefficients of the formal (divergent) series expansion at infinity of Sum_{k>=0} 1/binomial(x,k) = 1+1/x+2/x^2+8/x^3+... Also Sum_{k>=0} k!/x^k Product_{i=1..k-1} 1/(1-i/x) yields a generating function in 1/x. - Roland Bacher, Nov 21 2000
Stirling-Bernoulli transform of A001057: 1, -1, 2, -2, 3, -3, 4, ... - Philippe Deléham, May 27 2015
a(n) is the total number of open sets summed over all chain topologies that can be placed on an n-set. A chain topology is a topology whose open sets can be totally ordered by inclusion. - Geoffrey Critzer, Apr 06 2017
From Gus Wiseman, Jun 10 2020: (Start)
Also the number of length n + 1 sequences covering an initial interval of positive integers with no adjacent equal parts (anti-runs). For example, the a(0) = 1 through a(2) = 8 anti-runs are:
(1) (1,2) (1,2,1)
(2,1) (1,2,3)
(1,3,2)
(2,1,2)
(2,1,3)
(2,3,1)
(3,1,2)
(3,2,1)
Also the number of ordered set partitions of {1,...,n + 1} with no two successive vertices in the same block. For example, the a(0) = 1 through a(2) = 8 ordered set partitions are:
{{1}} {{1},{2}} {{1,3},{2}}
{{2},{1}} {{2},{1,3}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
(End)
From Manfred Boergens, Feb 24 2025: (Start)
a(n+1) is the n-th row sum in A380977.
Number of surjections f with domain [n+1] and f(n+1)!=f(j) for j
Number of (n+1)-tuples containing all elements of a set, with a unique last element.
Consider an urn with balls of pairwise different colors. a(n) is the number of (n+1)-sequences of draws with replacement completing the covering of all colors with the last draw, the number of colors running from 1 to n+1.
(End)

Examples

			a(2)=8 gives the number of 3-tuples containing all elements of a set [n] with n<=3 and a unique last element: 112, 221, 123, 213, 132, 312, 231, 321. - _Manfred Boergens_, Feb 24 2025
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000670.
2*A083410(n)=a(n), if n>0.
Pairwise sums of A052841 and also of A089677.
Anti-run compositions are counted by A003242.
A triangle counting maximal anti-runs of compositions is A106356.
Anti-runs of standard compositions are counted by A333381.
Adjacent unequal pairs in standard compositions are counted by A333382.
Cf. A380977.

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    f[n_] := Sum[(i + j)^n/2^(2 + i + j), {i, 0, Infinity}, {j, 0, Infinity}]; Array[f, 20, 0] (* Vladimir Reshetnikov, Dec 31 2008 *)
    a[n_] := (-1)^n (PolyLog[-n-1, 2] - PolyLog[-n, 2])/4; Array[f, 20, 0] (* Vladimir Reshetnikov, Jan 23 2011 *)
    Range[0, 19]! CoefficientList[Series[(2 - Exp@ x)^-2, {x, 0, 19}], x] (* Robert G. Wilson v, Jan 23 2011 *)
    nn = 19; Range[0, nn]! CoefficientList[Series[1 + D[u^2 (Exp[z] - 1)/(1 - u (Exp[z] - 1)), u] /. u -> 1, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 06 2017 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],FreeQ[Differences[#],0]&]],{n,0,6}] (* Gus Wiseman, Jun 10 2020 *)
    With[{nn=20},CoefficientList[Series[1/(2-E^x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 02 2021 *)
    Table[Sum[(m+1)! StirlingS2[n,m],{m,0,n}],{n,0,19}] (* Manfred Boergens, Feb 24 2025 *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(binomial(n,k)*t(k)*t(n-k),k,0,n),n,0,20);
    /* Emanuele Munarini, Oct 02 2012 */
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(1/(1-y)^2,y,exp(x+x*O(x^n))-1),n))
    
  • PARI
    a(n)=polcoeff(sum(m=0, n,(2*m)!/m!*x^m/prod(k=1, m,1+(m+k)*x+x*O(x^n))), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 03 2013
    

Formula

E.g.f.: 1/(2-exp(x))^2.
a(n) = (A000670(n) + A000670(n+1)) / 2. - Philippe Deléham, May 16 2005
a(n) = D^n(1/(1-x)^2) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A000670 and A052841. - Peter Bala, Nov 25 2011
E.g.f.: 1/(2-exp(x))^2 = 1/(G(0) + 4), G(k) = 1-4/((2^k)-x*(4^k)/((2^k)*x-(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011
O.g.f.: Sum_{n>=0} (2*n)!/n! * x^n / Product_{k=1..n} (1 + (n+k)*x). - Paul D. Hanna, Jan 03 2013
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1/G(0) where G(k) = 1 - x*(k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
a(n) = Sum_{k = 0..n} A163626(n,k) * A001057(k+1). - Philippe Deléham, May 27 2015
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n) = Sum_{k=0..n} Stirling2(n,k)*(k + 1)!. - Ilya Gutkovskiy, Jul 25 2018
From Seiichi Manyama, Nov 19 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} (k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 2*a(n-1) - 2*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). (End)

A124762 Number of levels for compositions in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 2, 4, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 2, 2, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 2, 2, 2, 2, 3, 5, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 1, 2, 1, 3, 0, 0, 1, 1, 1, 1, 2, 4, 0, 0, 0, 1, 1, 0, 0, 2, 0
Offset: 0

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. This sequence gives the number of adjacent equal terms in the n-th composition in standard order. Alternatively, a(n) is one fewer than the number of maximal anti-runs in the same composition, where anti-runs are sequences without any adjacent equal terms. For example, the 1234567th composition in standard order is (3,2,1,2,2,1,2,5,1,1,1) with anti-runs ((3,2,1,2),(2,1,2,5,1),(1),(1)), so a(1234567) = 4 - 1 = 3. - Gus Wiseman, Apr 08 2020

Examples

			Composition number 11 is 2,1,1; 2>1=1, so a(11) = 1.
The table starts:
  0
  0
  0 1
  0 0 0 2
  0 0 1 1 0 0 1 3
  0 0 0 1 0 1 0 2 0 0 1 1 1 1 2 4
  0 0 0 1 1 0 0 2 0 0 2 2 0 0 1 3 0 0 0 1 0 1 0 2 1 1 2 2 2 2 3 5
		

Crossrefs

Cf. A066099, A124760, A124761, A124763, A124764, A011782 (row lengths), A059570 (row sums).
Anti-runs summing to n are counted by A003242(n).
A triangle counting maximal anti-runs of compositions is A106356.
A triangle counting maximal runs of compositions is A238279.
Partitions whose first differences are an anti-run are A238424.
All of the following pertain to compositions in standard order (A066099):
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Adjacent unequal pairs are counted by A333382.
- Anti-runs are A333489.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Select[Partition[stc[n],2,1],SameQ@@#&]],{n,0,100}] (* Gus Wiseman, Apr 08 2020 *)

Formula

For a composition b(1),...,b(k), a(n) = Sum_{1<=i=1
For n > 0, a(n) = A333381(n) - 1. - Gus Wiseman, Apr 08 2020

A333382 Number of adjacent unequal parts in the n-th composition in standard-order.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 2, 1, 1, 2, 0, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 2
Offset: 0

Author

Gus Wiseman, Mar 24 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For n > 0, a(n) is one fewer than the number of maximal runs of the n-th composition in standard-order.

Examples

			The 46th composition in standard order is (2,1,1,2), with maximal runs ((2),(1,1),(2)), so a(46) = 3 - 1 = 2.
		

Crossrefs

Indices of first appearances (not counting 0) are A113835.
Partitions whose 0-appended first differences are a run are A007862.
Partitions whose first differences are a run are A049988.
A triangle counting maximal anti-runs of compositions is A106356.
A triangle counting maximal runs of compositions is A238279.
All of the following pertain to compositions in standard order (A066099):
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Anti-runs are ranked by A333489.
- Anti-runs are counted by A333381.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Select[Partition[stc[n],2,1],UnsameQ@@#&]],{n,0,100}]

Formula

For n > 0, a(n) = A124767(n) - 1.

A374515 Irregular triangle read by rows where row n lists the leaders of anti-runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 1, 3, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Author

Gus Wiseman, Jul 31 2024

Keywords

Comments

Anti-runs summing to n are counted by A003242(n).
The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal anti-runs of the 1234567th composition in standard order are ((3,2,1,2),(2,1,2,5,1),(1),(1)), so row 1234567 is (3,2,1,1).
The nonnegative integers, corresponding compositions, and leaders of anti-runs begin:
    0:      () -> ()        15: (1,1,1,1) -> (1,1,1,1)
    1:     (1) -> (1)       16:       (5) -> (5)
    2:     (2) -> (2)       17:     (4,1) -> (4)
    3:   (1,1) -> (1,1)     18:     (3,2) -> (3)
    4:     (3) -> (3)       19:   (3,1,1) -> (3,1)
    5:   (2,1) -> (2)       20:     (2,3) -> (2)
    6:   (1,2) -> (1)       21:   (2,2,1) -> (2,2)
    7: (1,1,1) -> (1,1,1)   22:   (2,1,2) -> (2)
    8:     (4) -> (4)       23: (2,1,1,1) -> (2,1,1)
    9:   (3,1) -> (3)       24:     (1,4) -> (1)
   10:   (2,2) -> (2,2)     25:   (1,3,1) -> (1)
   11: (2,1,1) -> (2,1)     26:   (1,2,2) -> (1,2)
   12:   (1,3) -> (1)       27: (1,2,1,1) -> (1,1)
   13: (1,2,1) -> (1)       28:   (1,1,3) -> (1,1)
   14: (1,1,2) -> (1,1)     29: (1,1,2,1) -> (1,1)
		

Crossrefs

Row-leaders of nonempty rows are A065120.
Row-lengths are A333381.
Row-sums are A374516.
Positions of identical rows are A374519 (counted by A374517).
Positions of distinct (strict) rows are A374638 (counted by A374518).
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression is A373948 or A374251, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],UnsameQ],{n,0,100}]

A374518 Number of integer compositions of n whose leaders of anti-runs are distinct.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 32, 58, 112, 201, 371, 694, 1276, 2342, 4330, 7958, 14613, 26866, 49303, 90369, 165646, 303342, 555056, 1015069, 1855230
Offset: 0

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 17 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                      (211)  (41)   (51)
                             (122)  (123)
                             (131)  (132)
                             (212)  (141)
                             (311)  (213)
                                    (231)
                                    (312)
                                    (321)
                                    (411)
                                    (1212)
                                    (1221)
                                    (2112)
                                    (2121)
		

Crossrefs

These compositions have ranks A374638.
The complement is counted by A374678.
For partitions instead of compositions we have A375133.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A274174, ranks A374249.
- For leaders of weakly increasing runs we have A374632, ranks A374768.
- For leaders of strictly increasing runs we have A374687, ranks A374698.
- For leaders of weakly decreasing runs we have A374743, ranks A374701.
- For leaders of strictly decreasing runs we have A374761, ranks A374767.
Other types of run-leaders (instead of distinct):
- For identical leaders we have A374517.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374517 Number of integer compositions of n whose leaders of anti-runs are identical.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 46, 85, 160, 301, 561, 1056, 1984, 3730, 7037, 13273, 25056, 47382, 89666, 169833, 322038, 611128, 1160660, 2206219, 4196730, 7988731, 15217557, 29005987, 55321015, 105570219, 201569648, 385059094, 735929616, 1407145439, 2691681402
Offset: 0

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (1211)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296 or A115029.
These compositions have ranks A374519.
The complement is counted by A374640.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of weakly increasing runs we have A374631, ranks A374633.
- For leaders of strictly increasing runs we have A374686, ranks A374685.
- For leaders of weakly decreasing runs we have A374742, ranks A374741.
- For leaders of strictly decreasing runs we have A374760, ranks A374759.
Other types of run-leaders (instead of identical):
- For distinct leaders we have A374518.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(g =1/(1 - sum(k=1, N, x^k/(1+x^k))));g}
    A_x(i,N) = {my(x='x+O('x^N), f=(x^i)*(C_x(N)*(x^i)+x^i+1)/(1+x^i)^2);f}
    B_x(i,j,N) = {my(x='x+O('x^N), f=C_x(N)*x^(i+j)/((1+x^i)*(1+x^j)));f}
    D_x(N) = {my(x='x+O('x^N), f=1+sum(i=1,N,-1+sum(j=0,N-i, A_x(i,N)^j)*(1-B_x(i,i,N)+sum(k=1,N-i,B_x(i,k,N)))));Vec(f)}
    D_x(30) \\ John Tyler Rascoe, Aug 16 2024

Formula

G.f.: 1 + Sum_{i>0} (-1 + Sum_{j>=0} (A(i,x)^j)*(1 + Sum_{k>0, k<>i} (B(i,k,x)))) where A(i,x) = (x^i)*(C(x)*(x^i) + x^i + 1)/(1+x^i)^2, B(i,k,x) = C(x)*x^(i+k)/((1+x^i)*(1+x^k)), and C(x) is the g.f. for A003242. - John Tyler Rascoe, Aug 16 2024

Extensions

a(26) onwards from John Tyler Rascoe, Aug 16 2024

A374638 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 24, 25, 26, 32, 33, 34, 35, 37, 38, 40, 41, 44, 45, 46, 48, 49, 50, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 88, 89, 91, 92, 93, 96, 97, 98, 100, 101, 102, 104
Offset: 1

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  11: (2,1,1)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
		

Crossrefs

Positions of distinct (strict) rows in A374515.
Compositions of this type are counted by A374518.
For identical instead of distinct we have A374519, counted by A374517.
The complement is A374639.
Other types of runs (instead of anti-):
- For identical runs we have A374249, counted by A274174.
- For weakly increasing runs we have A374768, counted by A374632.
- For strictly increasing runs we have A374698, counted by A374687.
- For weakly decreasing runs we have A374701, counted by A374743.
- For strictly decreasing runs we have A374767, counted by A374761.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],UnsameQ]&]
Showing 1-10 of 30 results. Next