cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A014407 Numbers k such that s(j) < s(k) for all j < k, where s = A014405.

Original entry on oeis.org

1, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 45, 54, 60, 72, 75, 84, 90, 105, 120, 144, 150, 168, 180, 210, 240, 270, 300, 315, 330, 360, 390, 420, 450, 480, 510, 540, 600, 630, 720, 780, 810, 840, 900, 960, 990, 1050, 1080, 1140, 1170, 1260, 1440, 1470, 1530, 1560, 1620, 1680, 1800, 1890
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A014405.

Extensions

More terms from Sean A. Irvine, Oct 22 2018
More terms from Fausto A. C. Cariboni, Feb 24 2019

A023645 a(n) = tau(n)-1 if n is odd or tau(n)-2 if n is even.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 3, 1, 4, 1, 4, 3, 2, 1, 6, 2, 2, 3, 4, 1, 6, 1, 4, 3, 2, 3, 7, 1, 2, 3, 6, 1, 6, 1, 4, 5, 2, 1, 8, 2, 4, 3, 4, 1, 6, 3, 6, 3, 2, 1, 10, 1, 2, 5, 5, 3, 6, 1, 4, 3, 6, 1, 10, 1, 2, 5, 4, 3, 6, 1, 8, 4, 2, 1, 10, 3, 2, 3, 6, 1, 10, 3, 4, 3, 2, 3, 10, 1, 4, 5, 7, 1, 6, 1, 6
Offset: 1

Views

Author

Keywords

Comments

Vertex-transitive graphs of valency 2 with n nodes.
Number of values of k such that n+2 divided by k leaves a remainder 2. - Amarnath Murthy, Aug 01 2002
Number of divisors of n that are less than n/2. - Peter Munn, Mar 31 2017, or equivalently, number of divisors of n that are greater than 2. - Antti Karttunen, Feb 20 2023
For n > 2, a(n) is the number of planar arrangements of equal-sized regular n-gons such that their centers lie on a circle and neighboring n-gons have an edge in common. - Peter Munn, Apr 23 2017
Number of partitions of n into two distinct parts such that the smaller divides the larger. - Wesley Ivan Hurt, Dec 21 2017

Examples

			x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + 4*x^12 + ...
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 649.

Crossrefs

Programs

  • Maple
    with(numtheory); f := n->if n mod 2 = 1 then tau(n)-1 else tau(n)-2; fi;
  • Mathematica
    Table[s = DivisorSigma[0, n]; If[OddQ[n], s - 1, s - 2], {n, 100}] (* T. D. Noe, Nov 18 2013 *)
    Array[DivisorSigma[0, #] - 1 - Boole@ EvenQ@ # &, 104] (* Michael De Vlieger, Apr 25 2017 *)
  • PARI
    {a(n) = if( n<1, 0, numdiv(n) - 2 + n%2)} /* Michael Somos, Apr 29 2003 */
    
  • PARI
    a(n) = sumdiv(n, d, d < n/2); \\ Michel Marcus, Apr 01 2017

Formula

G.f.: Sum_{k>0} x^(3*k) / (1 - x^k). - Michael Somos, Apr 29 2003.
a(2*n) = A069930(n). a(2*n + 1) = A095374(n). - Michael Somos, Aug 30 2012
a(n) = A072528(n+2,2) for n > 2. - Peter Munn, May 14 2017
From Peter Bala, Jan 13 2021: (Start)
a(n) = Sum_{ d|n, d < n/2 } 1. Cf. A296955.
G.f.: Sum_{k >= 3} x^k/(1 - x^k). (End)
a(n) = A049992(n) - A014405(n). - Antti Karttunen, Feb 20 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 5/2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

More terms from Vladeta Jovovic, Dec 03 2001

A049980 a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 4, 7, 6, 6, 9, 7, 8, 13, 9, 9, 15, 10, 12, 18, 13, 12, 20, 15, 15, 23, 17, 15, 28, 16, 18, 28, 20, 22, 33, 19, 22, 33, 26, 21, 39, 22, 26, 43, 27, 24, 43, 27, 33, 44, 31, 27, 50, 34, 34, 49, 34, 30, 60, 31, 36, 57, 38, 40
Offset: 1

Views

Author

Keywords

Comments

We need to find the number of pairs of positive integers (b, w) so that there is a positive integer m such that m*b + m*(m-1)*w/2 = n. - Petros Hadjicostas, Sep 27 2019

Examples

			a(6) = 4 because we have the following strictly increasing arithmetic progressions of positive integers adding up to n = 6: 6, 1+5, 2+4, and 1+2+3. - _Petros Hadjicostas_, Sep 27 2019
		

Crossrefs

Formula

Conjecture: a(n) = 1 + Sum_{m|n, m odd > 1} floor(2 * (n - m)/(m* (m - 1))) + Sum_{m|n} floor((n - m * (5 - (-1)^(n/m))/2 + m^2 * (1 - (-1)^(n/m)))/(2*m * (2*m - 1))). - Petros Hadjicostas, Sep 27 2019
G.f.: x/(1-x) + Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = x/(1-x) + Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019

A049982 Number of arithmetic progressions of 2 or more positive integers, strictly increasing with sum n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 3, 6, 5, 5, 8, 6, 7, 12, 8, 8, 14, 9, 11, 17, 12, 11, 19, 14, 14, 22, 16, 14, 27, 15, 17, 27, 19, 21, 32, 18, 21, 32, 25, 20, 38, 21, 25, 42, 26, 23, 42, 26, 32, 43, 30, 26, 49, 33, 33, 48, 33, 29, 59, 30, 35, 56, 37, 39, 61, 33, 39, 58, 49, 35, 67, 36, 42
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(sum(k=2, (sqrtint(8*n+1)-1)\2, x^binomial(k+1, 2)/(x^binomial(k+1, 2) - x^binomial(k, 2) - x^k + 1) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 28 2019

Formula

a(n) has generating function x^3/(x^3 - x - x^2 + 1) + x^6/(x^6 - x^3 - x^3 + 1) + x^10/(x^10 - x^6 - x^4 + 1) + ... = Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1), where t(k) = A000217(k) is the k-th triangular number. Term k of this generating function generates the number of arithmetic progressions of k positive integers, strictly increasing with sum n. - Graeme McRae, Feb 08 2007
From Petros Hadjicostas, Sep 27 2019: (Start)
a(n) = A049980(n) - 1 = A049988(n) - A000005(n).
a(n) = A049981(n) - A049981(n-1) - 1 for n >= 2.
Conjecture: a(n) = Sum_{m|n, m odd > 1} floor(2 * (n - m)/(m* (m - 1))) + Sum_{m|n} floor((n - m * (5 - (-1)^(n/m))/2 + m^2 * (1 - (-1)^(n/m)))/(2*m * (2*m - 1))).
(End)

Extensions

More terms from Petros Hadjicostas, Sep 28 2019

A049987 a(n) is the number of arithmetic progressions of 4 or more positive integers, strictly increasing with sum <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 4, 5, 5, 7, 8, 10, 10, 11, 13, 15, 16, 19, 19, 23, 23, 25, 26, 29, 33, 37, 37, 40, 41, 47, 47, 52, 52, 56, 62, 66, 66, 70, 72, 80, 82, 87, 87, 93, 99, 105, 107, 112, 112, 123, 123, 128, 133, 139, 146, 154, 154, 160, 162, 177, 177, 186, 186, 192, 202
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049986(k).
G.f.: (g.f. of A049986)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A049983 a(n) is the number of arithmetic progressions of 2 or more positive integers, strictly increasing with sum <= n.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 10, 13, 19, 24, 29, 37, 43, 50, 62, 70, 78, 92, 101, 112, 129, 141, 152, 171, 185, 199, 221, 237, 251, 278, 293, 310, 337, 356, 377, 409, 427, 448, 480, 505, 525, 563, 584, 609, 651, 677, 700, 742, 768, 800, 843, 873, 899, 948, 981, 1014, 1062, 1095, 1124, 1183, 1213, 1248, 1304, 1341, 1380
Offset: 1

Views

Author

Keywords

Examples

			a(7) = 10 because we have the following arithmetic progressions of two or more positive integers, strictly increasing with sum <= n = 7: 1+2, 1+3, 1+4, 1+5, 1+6, 2+3, 2+4, 2+5, 3+4, and 1+2+3. - _Petros Hadjicostas_, Sep 27 2019
		

Crossrefs

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049982(k) = -n + Sum_{k = 1..n} A049980(k) = -n + A049981(k).
G.f.: (g.f. of A049982)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 27 2019

A049986 a(n) is the number of arithmetic progressions of 4 or more positive integers, strictly increasing with sum n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 0, 1, 2, 2, 1, 3, 0, 4, 0, 2, 1, 3, 4, 4, 0, 3, 1, 6, 0, 5, 0, 4, 6, 4, 0, 4, 2, 8, 2, 5, 0, 6, 6, 6, 2, 5, 0, 11, 0, 5, 5, 6, 7, 8, 0, 6, 2, 15, 0, 9, 0, 6, 10, 7, 4, 9, 0, 14, 5, 7, 0, 12, 9, 7, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k >= 4} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 4} x^t(k)/((1 - x^k)*(1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
a(n) = A049994(n) - A321014(n). [Listed by Sequence Machine and obviously true] - Antti Karttunen, Feb 20 2023

A049981 a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum <= n.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 17, 21, 28, 34, 40, 49, 56, 64, 77, 86, 95, 110, 120, 132, 150, 163, 175, 195, 210, 225, 248, 265, 280, 308, 324, 342, 370, 390, 412, 445, 464, 486, 519, 545, 566, 605, 627, 653, 696, 723, 747, 790, 817, 850, 894, 925, 952, 1002, 1036, 1070, 1119, 1153, 1183, 1243, 1274, 1310
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049980(k) = n + Sum_{k = 1..n} A049982(k).
G.f.: (g.f. of A049980)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A014406 Number of strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 3, 4, 4, 7, 7, 8, 13, 14, 14, 20, 20, 22, 29, 31, 31, 39, 41, 43, 52, 55, 55, 68, 68, 70, 81, 84, 88, 103, 103, 106, 119, 125, 125, 143, 143, 147, 167, 171, 171, 190, 192, 200, 218, 223, 223, 246, 252, 258, 278, 283, 283, 313, 313, 318, 343, 349, 356, 385, 385
Offset: 1

Views

Author

Keywords

Examples

			From _Petros Hadjicostas_, Sep 29 2019: (Start)
a(8) = 1 because we have only the following strictly increasing arithmetic progression of positive integers with at least 3 terms and sum <= 8: 1+2+3.
a(9) = 3 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 9: 1+2+3, 1+3+5, and 2+3+4.
a(10) = 4 because we have the following strictly increasing arithmetic progressions of positive integers with at least 3 terms and sum <= 10: 1+2+3, 1+3+5, 2+3+4, and 1+2+3+4.
(End)
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} A014405(k). - Sean A. Irvine, Oct 22 2018
G.f.: (g.f. of A014405)/(1-x). - Petros Hadjicostas, Sep 29 2019

Extensions

a(59)-a(67) corrected by Fausto A. C. Cariboni, Oct 02 2018

A049990 a(n) is the number of arithmetic progressions of 2 or more positive integers, nondecreasing with sum n.

Original entry on oeis.org

0, 1, 2, 3, 3, 6, 4, 6, 8, 8, 6, 13, 7, 10, 15, 12, 9, 19, 10, 16, 20, 15, 12, 26, 16, 17, 25, 21, 15, 34, 16, 22, 30, 22, 24, 40, 19, 24, 35, 32, 21, 45, 22, 30, 47, 29, 24, 51, 28, 37, 46, 35, 27, 56, 36, 40, 51, 36, 30, 70, 31, 38, 61, 43
Offset: 1

Views

Author

Keywords

Examples

			a(6) counts these 6 partitions of 6: [5,1], [4,2], [3,3], [3,2,1], [2,2,2], [1,1,1,1,1,1].
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 *)
    Map[Length[Map[#[[2]] &, Select[Map[{Apply[SameQ, Differences[#]], #} &,
    IntegerPartitions[#]], #[[1]] &]]] &, Range[40]] - 1
    (* Peter J. C. Moses, Dec 24 2016 *)
    (* Program 2 *)
    enumerateArithmeticPartitions[n_] := Module[{allDivs, oddDivs},
    {allDivs, oddDivs} = {#, Select[#, OddQ]} &[Divisors[n]]; Map[Reverse, Union[Flatten[Table[If[OddQ[cDiff], (Flatten[
    Map[{If[(2 n - #) cDiff <= # (# - 2), {Table[(cDiff + # - 2 cDiff n/#)/2 +
    cDiff term, {term, 0, 2 n/# - 1}]}, {}], If[# (# - 1) cDiff <= 2 (n - #),
    {Table[(cDiff + 2 n/# - # cDiff)/2 + cDiff term, {term, 0, # - 1}]},
    {}]} &, oddDivs], 2]), (Flatten[Map[If[(n - #) cDiff <= 2 # (# - 1),
    {Table[(cDiff + 2 # - n cDiff/#)/2 + cDiff term, {term, 0, n/# - 1}]}, {}] &,
    allDivs], 1])], {cDiff, 0, n - 2}], 1]]]];
    Join[{0}, Map[Length[enumerateArithmeticPartitions[#]] - 1 &, Range[2, 300]]]
    n = 12; enumerateArithmeticPartitions[12] (* shows the desired partition of n *)
    (* Peter J. C. Moses, Dec 24 2016 *)

Formula

a(A000040(n)) = A111333(n). - Clark Kimberling, Dec 26 2016
From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = A049988(n) - 1. [Note that A049988 has offset 0.]
G.f.: Sum_{k>=2} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988]
(End)
Showing 1-10 of 17 results. Next