cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A097986 Number of strict integer partitions of n with a part dividing all the other parts.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 3, 5, 5, 7, 6, 12, 9, 13, 15, 20, 18, 28, 26, 37, 39, 47, 49, 71, 68, 85, 94, 117, 120, 159, 160, 201, 216, 257, 277, 348, 357, 430, 470, 562, 592, 720, 758, 901, 981, 1134, 1220, 1457, 1542, 1798, 1952, 2250, 2419, 2819, 3023, 3482, 3773, 4291
Offset: 1

Views

Author

Vladeta Jovovic, Oct 23 2004

Keywords

Comments

If n > 0, we can assume such a part is the smallest. - Gus Wiseman, Apr 23 2021
Also the number of uniform (constant multiplicity) partitions of n containing 1, ranked by A367586. The strict case is A096765. The version without 1 is A329436. - Gus Wiseman, Dec 01 2023

Examples

			From _Gus Wiseman_, Dec 01 2023: (Start)
The a(1) = 1 through a(8) = 5 strict partitions with a part dividing all the other parts:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)
            (2,1)  (3,1)  (4,1)  (4,2)    (6,1)    (6,2)
                                 (5,1)    (4,2,1)  (7,1)
                                 (3,2,1)           (4,3,1)
                                                   (5,2,1)
The a(1) = 1 through a(8) = 5 uniform partitions containing 1:
  (1)  (11)  (21)   (31)    (41)     (51)      (61)       (71)
             (111)  (1111)  (11111)  (321)     (421)      (431)
                                     (2211)    (1111111)  (521)
                                     (111111)             (3311)
                                                          (11111111)
(End)
		

Crossrefs

The non-strict version is A083710.
The case with no 1's is A098965.
The Heinz numbers of these partitions are A339563.
The strict complement is counted by A341450.
The version for "divisible by" instead of "dividing" is A343347.
The case where there is also a part divisible by all the others is A343378.
The case where there is no part divisible by all the others is A343381.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Take[ CoefficientList[ Expand[ Sum[x^k*Product[1 + x^(k*i), {i, 2, 62}], {k, 62}]], x], {2, 60}] (* Robert G. Wilson v, Nov 01 2004 *)
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[And@@IntegerQ/@(#/x), {x,#}]&]], {n,0,30}] (* Gus Wiseman, Apr 23 2021 *)
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(sum(k=1,N,x^k*prod(i=2,N-k, (1+x^(k*i)))))}
    A_x(50) \\ John Tyler Rascoe, Nov 19 2024

Formula

a(n) = Sum_{d|n} A025147(d-1).
G.f.: Sum_{k>=1} (x^k*Product_{i>=2} (1+x^(k*i))).
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jul 06 2025

Extensions

More terms from Robert G. Wilson v, Nov 01 2004
Name shortened by Gus Wiseman, Apr 23 2021

A135539 Triangle read by rows: T(n,k) = number of divisors of n that are >= k.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 30 2007

Keywords

Comments

Row sums give A000203.
Left border is A000005.

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  3, 2, 1, 1;
  2, 1, 1, 1, 1;
  4, 3, 2, 1, 1, 1;
  2, 1, 1, 1, 1, 1, 1;
  4, 3, 2, 2, 1, 1, 1, 1;
  3, 2, 2, 1, 1, 1, 1, 1, 1;
  4, 3, 2, 2, 2, 1, 1, 1, 1, 1;
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    f1:=proc(n) local d,s1,t1,t2,i;
    d:=tau(n);
    s1:=sort(divisors(n));
    t1:=Array(1..n,0);
    for i from 1 to d do t1[n-s1[i]+1]:=1; od:
    t2:=PSUM(convert(t1,list));
    [seq(t2[n+1-i],i=1..n)];
    end proc;
    for n from 1 to 15 do lprint(f1(n)); od: # N. J. A. Sloane, Nov 09 2018
  • Mathematica
    T[n_, k_] := DivisorSum[n, Boole[# >= k]&];
    Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 15 2023 *)
  • PARI
    row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ Michel Marcus, Jul 23 2022

Formula

Triangle read by rows, partial sums of A051731 starting from the right. A051731 as a lower triangular matrix times an all 1's lower triangular matrix.
From Seiichi Manyama, Jan 07 2023: (Start)
G.f. of column k: Sum_{j>=1} x^(k*j)/(1 - x^j).
G.f. of column k: Sum_{j>=k} x^j/(1 - x^j). (End)
Sum_{j=1..n} T(j, k) ~ n * (log(n) + 2*gamma - 1 - H(k-1)), where gamma is Euler's constant (A001620), and H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 08 2024

Extensions

Clearer definition from N. J. A. Sloane, Nov 09 2018

A014405 Number of arithmetic progressions of 3 or more positive integers, strictly increasing with sum n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 3, 0, 1, 5, 1, 0, 6, 0, 2, 7, 2, 0, 8, 2, 2, 9, 3, 0, 13, 0, 2, 11, 3, 4, 15, 0, 3, 13, 6, 0, 18, 0, 4, 20, 4, 0, 19, 2, 8, 18, 5, 0, 23, 6, 6, 20, 5, 0, 30, 0, 5, 25, 6, 7, 29, 0, 6, 24, 15, 0, 32, 0, 6, 34, 7, 4, 34, 0, 14, 31, 7, 0, 39, 9, 7, 31, 9, 0, 49, 5, 9, 33, 8, 10, 42, 0, 12
Offset: 1

Views

Author

Keywords

Examples

			E.g., 15 = 1+2+3+4+5 = 1+5+9 = 2+5+8 = 3+5+7 = 4+5+6.
		

Crossrefs

Programs

  • PARI
    a(n)= t=0; st=0; forstep(s=(n-3)\3,1,-1, st++; for(c=1,st, m=3; w=m*(s+c); while(wRick L. Shepherd, Aug 30 2006

Formula

G.f.: Sum_{k >= 3} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 3} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
a(n) = A049992(n) - A023645(n). - Antti Karttunen, Feb 20 2023

A049986 a(n) is the number of arithmetic progressions of 4 or more positive integers, strictly increasing with sum n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 0, 1, 2, 2, 1, 3, 0, 4, 0, 2, 1, 3, 4, 4, 0, 3, 1, 6, 0, 5, 0, 4, 6, 4, 0, 4, 2, 8, 2, 5, 0, 6, 6, 6, 2, 5, 0, 11, 0, 5, 5, 6, 7, 8, 0, 6, 2, 15, 0, 9, 0, 6, 10, 7, 4, 9, 0, 14, 5, 7, 0, 12, 9, 7, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k >= 4} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 4} x^t(k)/((1 - x^k)*(1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
a(n) = A049994(n) - A321014(n). [Listed by Sequence Machine and obviously true] - Antti Karttunen, Feb 20 2023

A319367 Triangle read by rows: T(n,k) is the number of simple vertex transitive graphs with n nodes and valency k, (0 <= k < n).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 0, 2, 0, 3, 0, 2, 0, 1, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 1, 4, 7, 11, 13, 13, 11, 7, 4, 1, 1, 1, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 17 2018

Keywords

Examples

			Triangle begins, n >= 1, 0 <= k < n:
  1;
  1, 1;
  1, 0, 1;
  1, 1, 1, 1;
  1, 0, 1, 0,  1;
  1, 1, 2, 2,  1,  1;
  1, 0, 1, 0,  1,  0,  1;
  1, 1, 2, 3,  3,  2,  1,  1;
  1, 0, 2, 0,  3,  0,  2,  0,  1;
  1, 1, 2, 3,  4,  4,  3,  2,  1,  1;
  1, 0, 1, 0,  2,  0,  2,  0,  1,  0,  1;
  1, 1, 4, 7, 11, 13, 13, 11,  7,  4,  1,  1;
  1, 0, 1, 0,  3,  0,  4,  0,  3,  0,  1,  0,  1;
  1, 1, 2, 3,  6,  6,  9,  9,  6,  6,  3,  2,  1,  1;
  1, 0, 3, 0,  8,  0, 12,  0, 12,  0,  8,  0,  3,  0, 1;
  1, 1, 3, 7, 16, 27, 40, 48, 48, 40, 27, 16,  7,  3, 1, 1;
  1, 0, 1, 0,  4,  0,  7,  0, 10,  0,  7,  0,  4,  0, 1, 0, 1;
  1, 1, 4, 7, 16, 24, 38, 45, 54, 54, 45, 38, 24, 16, 7, 4, 1, 1;
  ...
		

Crossrefs

Columns k=2..12 (even n only for odd k) are A023645, A023646, A023647, A023640, A023641, A023642, A023643, A023644, A023637, A023638, A023639.
Row sums are A006799.

A338648 Number of divisors of n which are greater than 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 3, 2, 2, 3, 5, 1, 2, 2, 5, 1, 5, 1, 3, 4, 2, 1, 6, 2, 4, 2, 3, 1, 5, 3, 5, 2, 2, 1, 8, 1, 2, 4, 4, 3, 5, 1, 3, 2, 6, 1, 8, 1, 2, 4, 3, 3, 5, 1, 7, 3, 2, 1, 8, 3, 2, 2, 5, 1, 9, 3, 3, 2, 2, 3, 8, 1, 4, 4, 6, 1, 5, 1, 5, 6, 2, 1, 8, 1, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 4 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(5 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 5, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>4); \\ Michel Marcus, Apr 22 2021; corrected Jun 13 2022
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=5, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(5*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=5} (1 - x^k)^(1/k) ).
a(n) = A000005(n) - A083040(n).
G.f.: Sum_{k>=5} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 37/12), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(4) prepended by David A. Corneth, Jun 13 2022

A338649 Number of divisors of n which are greater than 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 4, 4, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 3, 5, 1, 6, 3, 2, 1, 8, 2, 2, 2, 5, 1, 8, 3, 3, 2, 2, 2, 8, 1, 4, 4, 5, 1, 5, 1, 5, 5, 2, 1, 8, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 5 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(6 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 6, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>5); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=6, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(6*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=6} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=6} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 197/60), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(5) prepended by David A. Corneth, Jun 13 2022

A338650 Number of divisors of n which are greater than 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 4, 1, 3, 2, 5, 1, 7, 1, 2, 3, 3, 3, 4, 1, 6, 3, 2, 1, 7, 2, 2, 2, 5, 1, 7, 3, 3, 2, 2, 2, 7, 1, 4, 4, 5, 1, 4, 1, 5, 5, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 6 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(7 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 7, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>6); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0], Vec(sum(k=7, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(7*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=7} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=7} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 69/20), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(6) prepended by David A. Corneth, Jun 13 2022

A338651 Number of divisors of n which are greater than 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 4, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 3, 2, 1, 6, 2, 2, 2, 5, 1, 7, 2, 3, 2, 2, 2, 7, 1, 3, 4, 5, 1, 4, 1, 5, 4, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 7 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(8 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 8, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>7); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0], Vec(sum(k=8, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(8*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=8} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=8} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 503/140), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(7) prepended by David A. Corneth, Jun 13 2022

A338652 Number of divisors of n which are greater than 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 2, 3, 2, 2, 1, 6, 1, 2, 3, 3, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 4, 1, 7, 2, 3, 2, 2, 2, 6, 1, 3, 4, 5, 1, 4, 1, 4, 4, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 8 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(9 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 9, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>8); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=9, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(9*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=9} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=9} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 1041/280), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(8) prepended by David A. Corneth, Jun 13 2022
Showing 1-10 of 27 results. Next