cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325351 Heinz number of the augmented differences of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 6, 10, 11, 12, 13, 14, 9, 16, 17, 12, 19, 20, 15, 22, 23, 24, 10, 26, 12, 28, 29, 18, 31, 32, 21, 34, 15, 24, 37, 38, 33, 40, 41, 30, 43, 44, 18, 46, 47, 48, 14, 20, 39, 52, 53, 24, 25, 56, 51, 58, 59, 36, 61, 62, 30, 64, 35, 42, 67, 68, 57, 30, 71, 48, 73, 74, 18, 76, 21, 66, 79, 80, 24, 82, 83, 60, 55, 86, 69, 88, 89, 36, 35
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). Note that aug preserves length so this sequence preserves omega (number of prime factors counted with multiplicity).

Examples

			The partition (3,2,2,1) with Heinz number 90 has augmented differences (2,1,2,1) with Heinz number 36, so a(90) = 36.
		

Crossrefs

Number of appearances of n is A008480(n).

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
  • PARI
    augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
    A325351(n) = factorback(apply(prime,augdiffs(n))); \\ Antti Karttunen, Nov 16 2019

Extensions

More terms from Antti Karttunen, Nov 16 2019