cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A014580 Binary irreducible polynomials (primes in the ring GF(2)[X]), evaluated at X=2.

Original entry on oeis.org

2, 3, 7, 11, 13, 19, 25, 31, 37, 41, 47, 55, 59, 61, 67, 73, 87, 91, 97, 103, 109, 115, 117, 131, 137, 143, 145, 157, 167, 171, 185, 191, 193, 203, 211, 213, 229, 239, 241, 247, 253, 283, 285, 299, 301, 313, 319, 333, 351, 355, 357, 361, 369, 375
Offset: 1

Views

Author

David Petry (petry(AT)accessone.com)

Keywords

Comments

Or, binary irreducible polynomials, interpreted as binary vectors, then written in base 10.
The numbers {a(n)} are a subset of the set {A206074}. - Thomas Ordowski, Feb 21 2014
2^n - 1 is a term if and only if n = 2 or n is a prime and 2 is a primitive root modulo n. - Jianing Song, May 10 2021
For odd k, k is a term if and only if binary_reverse(k) = A145341((k+1)/2) is. - Joerg Arndt and Jianing Song, May 10 2021

Examples

			x^4 + x^3 + 1 -> 16+8+1 = 25. Or, x^4 + x^3 + 1 -> 11001 (binary) = 25 (decimal).
		

Crossrefs

Written in binary: A058943.
Number of degree-n irreducible polynomials: A001037, see also A000031.
Multiplication table: A048720.
Characteristic function: A091225. Inverse: A091227. a(n) = A091202(A000040(n)). Almost complement of A091242. Union of A091206 & A091214 and also of A091250 & A091252. First differences: A091223. Apart from a(1) and a(2), a subsequence of A092246 and hence A000069.
Table of irreducible factors of n: A256170.
Irreducible polynomials satisfying particular conditions: A071642, A132447, A132449, A132453, A162570.
Factorization sentinel: A278239.
Sequences analyzing the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the corresponding integer: A234741, A234742, A235032, A235033, A235034, A235035, A235040, A236850, A325386, A325559, A325560, A325563, A325641, A325642, A325643.
Factorization-preserving isomorphisms: A091203, A091204, A235041, A235042.
See A115871 for sequences related to cross-domain congruences.
Functions based on the irreducibles: A305421, A305422.

Programs

  • Mathematica
    fQ[n_] := Block[{ply = Plus @@ (Reverse@ IntegerDigits[n, 2] x^Range[0, Floor@ Log2@ n])}, ply == Factor[ply, Modulus -> 2] && n != 2^Floor@ Log2@ n]; fQ[2] = True; Select[ Range@ 378, fQ] (* Robert G. Wilson v, Aug 12 2011 *)
    Reap[Do[If[IrreduciblePolynomialQ[IntegerDigits[n, 2] . x^Reverse[Range[0, Floor[Log[2, n]]]], Modulus -> 2], Sow[n]], {n, 2, 1000}]][[2, 1]] (* Jean-François Alcover, Nov 21 2016 *)
  • PARI
    is(n)=polisirreducible(Pol(binary(n))*Mod(1,2)) \\ Charles R Greathouse IV, Mar 22 2013

A325559 Numbers n such that for any divisor d of n, and some integer k, A048720(d,k) = n only for trivial cases d=1 and d=n.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 113, 115, 117, 121, 127, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 171, 173, 179, 181, 185, 191, 193, 197, 199, 203, 205, 209, 211, 213, 223, 227, 229, 233
Offset: 1

Views

Author

Antti Karttunen, May 11 2019

Keywords

Comments

These are numbers n such that there are only two divisor pairs (d, n/d) [namely, the trivial pairs (1, n) and (n, 1)] that satisfy the condition that when their binary expansions are converted to (0,1)-polynomials (e.g., 13=1101[2] encodes X^3 + X^2 + 1), then their product is the (0,1)-polynomial similarly converted from n, when the multiplication is done over field GF(2).
Differs from A206074 for the first time at n=173, where a(173) = 555, a value missing from A206074, while the first three terms of A206074 not present in this sequence are k = 689, 781 and 913, for all of which A325560(k) = 3, not 2.

Crossrefs

Positions of 2's in A325560, positions of 1's in A325563 (after the initial 1), fixed points of A325643 (after the initial 1).
Some subsequences: A257688 (after its initial 1), A325386 (the remaining terms).

Programs

  • PARI
    A325560(n) = { my(p = Pol(binary(n))*Mod(1, 2)); sumdiv(n,d,my(q = Pol(binary(d))*Mod(1, 2)); !(p%q)); };
    isA325559(n) = (2 == A325560(n));
Showing 1-2 of 2 results.