A325424 Complement of A036668: numbers not of the form 2^i*3^j*k, i + j even, (k,6) = 1.
2, 3, 8, 10, 12, 14, 15, 18, 21, 22, 26, 27, 32, 33, 34, 38, 39, 40, 46, 48, 50, 51, 56, 57, 58, 60, 62, 69, 70, 72, 74, 75, 82, 84, 86, 87, 88, 90, 93, 94, 98, 104, 105, 106, 108, 110, 111, 118, 122, 123, 126, 128, 129, 130, 132, 134, 135, 136, 141, 142
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Symmetric difference
Crossrefs
Programs
-
Mathematica
a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}], IntegerQ]]] &]], {150}]; a (* A036668 *) Complement[Range[Last[a]], a] (* A325424 *) (* Peter J. C. Moses, Apr 23 2019 *)
-
Python
from itertools import count def A325424(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n for i in range(x.bit_length()+1): i2 = 1<x: break m = x//k c += (m-1)//6+(m-5)//6+2 return c return bisection(f,n,n) # Chai Wah Wu, Jan 28 2025
Comments