cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325424 Complement of A036668: numbers not of the form 2^i*3^j*k, i + j even, (k,6) = 1.

Original entry on oeis.org

2, 3, 8, 10, 12, 14, 15, 18, 21, 22, 26, 27, 32, 33, 34, 38, 39, 40, 46, 48, 50, 51, 56, 57, 58, 60, 62, 69, 70, 72, 74, 75, 82, 84, 86, 87, 88, 90, 93, 94, 98, 104, 105, 106, 108, 110, 111, 118, 122, 123, 126, 128, 129, 130, 132, 134, 135, 136, 141, 142
Offset: 1

Views

Author

Clark Kimberling, Apr 26 2019

Keywords

Comments

These are the numbers 2x and 3x as x ranges through the numbers in A036668.
Numbers whose squarefree part is divisible by exactly one of {2, 3}. - Peter Munn, Aug 24 2020
The asymptotic density of this sequence is 5/12. - Amiram Eldar, Sep 20 2020

Crossrefs

Symmetric difference of: A003159 and A007417; A036554 and A145204\{0}.

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or,
    Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}],
    IntegerQ]]] &]], {150}]; a     (* A036668 *)
    Complement[Range[Last[a]], a]  (* A325424 *)
    (* Peter J. C. Moses, Apr 23 2019 *)
  • Python
    from itertools import count
    def A325424(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n
            for i in range(x.bit_length()+1):
                i2 = 1<x:
                        break
                    m = x//k
                    c += (m-1)//6+(m-5)//6+2
            return c
        return bisection(f,n,n) # Chai Wah Wu, Jan 28 2025

Formula

(2 * {A036668}) union (3 * {A036668}). - Sean A. Irvine, May 19 2019